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Introduction

e Man-made environments provide rich
structural information (e.g. planes...)

e Estimation of planes enables scene
understanding (e.g. AR/ VR)

e Constraining 3D features to planes
through point-on-plane
regularization can improve efficiency
(reduce state)
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Key Contributions:

Novel plane detection and tracking with
only a monocular camera

Efficient filter-based VIO with planar
regularities

Open sourced code and dataset
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Monocular Plane Feature Detection and Tracking

e Sparse Point Features:
o FAST detection
o KLT provides frame-to-frame tracking

e Point Feature Meshing
o 3D point feature recovery
o 2D mesh (Delaunay triangulation)

o Compute normals of triangles

e Vertex Normals:
o Use neighboring triangles normals to
compute avg. vertex normals
o Remove invalidate vertices with high

variance (points on the edge)

e Vertex Matching Heuristics I
o Pairwise comparison with neighbors ! real-world experiments .
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o Normal difference, point-to-plane distance, (e.g. ~3-4 ms on EuRoC Mav) I
statistical filter to remove outlier e e e e e I
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Planar Regularities
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Planar Regularities
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MSCKF and SLAM feature updates to
balance accuracy and efficiency
Planar regularities can constrain both
In-state and out-of-state features
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Planar Regularities

Stack linearized bearing z. and
regularity measurements 24
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MSCKF and SLAM feature updates to
balance accuracy and efficiency
Planar regularities can constrain both
In-state and out-of-state features
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Point-on- plane regularity -1 SLAM planes shown impressive performance by
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Experimental Results: Detection and tracking

EuRoC MAV
e Planes can be tracked much Vicon Rooms
longer than points to better V1_01

constrain the motion f}

e Efficient to include planes
without an additional sensor

Dataset Feat./PL PL/Frame Track Len. PL Active Time (ms)

VI_0l 1964133 294123 53.4+£740 | 0907 | 33£07

V1_03 10.1+94 07+£10 |249+260 | 00+02 |20+0.7 . _
Efficient plane detection and

table 01 273 £13.1 27£11 |61.1£2276| 1.1£05 |35+07 tracking performance!
table 02 82.0£587 22£13 |491£2492 | 1.2£06 | 4109 I
table 03 339£213 30£12 |885%£3374| 1506 |40%£07

*All computational results were performed in a single thread on an Intel(R) Xeon(R) E3-1505Mv6 @ 3.00GHz.



Experimental Results

Table 1: Simulation RPE results (degree / cm). M: MSCKF
feature, S: SLAM feature, PT: Point, PL: Plane.

Algorithm 60m 80m 100m 120m NEES(3)

M-PT 037/43 044/50 050/56 055/6.2) 3.39/1.75
M-PT & M-PL  0.37/43 043/49 048/55 0.53/6.1| 3.34/1.72
M-PT & MS-PL  0.36/3.6 042/4.1 0.48/4.6 0.53/5.1] 3.99/1.44

MS-PT 030/3.6 035/4.1 040/4.6 043/5.1) 345/1.63
MS-PT & M-PL  0.29/3.5 0.33/40 0.37/45 041/49] 3.09/1.44
MS-PT & MS-PL 0.29/2.9 035/3.3 039/3.7 042/4.1| 3.38/1.20

e Impressive performance gain by
introducing SLAM planes

e Consistent estimation with planar
regularities!



Experimental Results

Table 2: Real-world AR Table Dataset (degree / cm)

Algorithm table_01 table_02

M-PT 0.45/6.8 0.85/24
M-PT & M-PL _0.52/6.5 0.91/2.5

table_03

1.37/5.6
1.44/59

table_04 Time (ms)

0.83/75 87=x1.7
087/7.1 133+32

M-PT & MS-PL [0.67 /4.6 0.72 /2.0

0.96 /3.0

0.75/32 ] 139+29

MS-PT 1.15/57 1.719/74.1
MS-PT & M-PL 1.32/5.5 0.89/2.5

241769
1.03/4.5

128757 94+20
1.10/4.7 150+£39

MS-PT & MS-PLl 1.25/5.1 0.65/2.3

1.05/4.6

0.79/5.0 | 147+ 32

VINS-Fusion [1] 1.62/5.8 1.32/3.0

1.47/7.6

1.75/5.6 35.6 £17.0%

OKVIS [2] 248/9.0 2.01/7.7 3.94/15.3 2.05/16.2 85.5 + 32.6%

e Including planes improves VIO accuracy!

e Efficient performance

e Outperform state-of-the-art point-based

systems
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