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I. SINGLE-IMAGE DEPTH AIDED INITIALIZATION

We now consider we are given a single affine-invariant (up-to scale and offset) depth map, D, in the first frame
of reference at time t0. We formulate all features as a function of this depth map and the feature bearing in the
first camera frame {C0}. The minimal state we wish to recover is:

x′ =
[
a b I0v⊤

I0
I0g⊤]⊤ (1)

where we have assumed that the affine-invariant depth map D is sufficiently accurate and can provide an estimate
of the 3D structure in front of the camera up to a scale a and offset parameter b from just a single frame [1].

A. Inertial Measurement Model

The inertial measurement unit (IMU) provides angular velocities ω and linear accelerations a in the inertial
frame. These can be used to recover how the state evolves from one timestep to the next with the following state
dynamics:
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From the above, we define the following integration terms:
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We then remove the global frame by integrating relative to the first inertial frame. This can be derived for the
position as:
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We can thus have the following relative preintegration equations:
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We now define the integration from the first {I0} frame:
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Note that the time offset ∆T is now from time t0 to tk+1.

B. Depth-Aided Feature Bearing Model

Fig. 1: Frame of references used in the problem. Two features observed from both the {Ck} and {C0} frame are
shown. The transformation from the {Ik} and {I0} is found through IMU integration. The bearing C0θfi is used
along with the scale-less depth to recover the scale a and shift b.

Assuming a calibrated perspective camera, the bearing measurement of the i’th feature at timestep tk can be
related to the state by the following:

zi,k := Λ(Ckpfi) + nk (22)
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where Λ([x y z]⊤) = [x/z y/z]⊤ is the camera perspective projection model, zi,k = [ui,k, vi,k]
⊤ is the normalized

feature bearing measurement with white Gaussian noise nk ∼ N (0,Rk), and {CI R, CpI} are the known camera-
IMU transformation.

We assume that for a single image the scale a and shift b are constant for the whole depth map. Specifically, for
feature I0pfi we can express the metric depth scalar zi = Z(ui,0, vi,0) as a function of a, b, and di = D(ui,0, vi,0):
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where I0θC0→fi =
I
CR[ui,0 vi,0 1]⊤ is the bearing vector of the feature rotated (but not translated) into the IMU

frame, see Fig. 1 for example frame of references. This treats the normalized 2D coordinates of the feature in the
first camera frame ui,0 and vi,0 as a known quantity.

We can define the following linear measurement observation, which removes the need for the division in Λ(·).
As presented in [2, 3], we consider the following:[

1 0 −ui,k
0 1 −vi,k

]
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(25)



One can check that the left side of the above equation when multiplied out, should equate to zero. This shows that
the difference between the normalized feature observation and the projected feature should be zero.

Substituting Eq. (24) and Eq. (19) into Eq. (23) we can recover the following linear system:
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Rearrange Eq. (28) we can get:
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where ∆Tk = ∆TkI3 . Given M features from N images, A′ ∈ R2MN×(2+6) and b′ ∈ R2MN . One can see that
the state size remains constant, no matter how many features are included in the problem. The general matrix form
for a given k’th image is:
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where we have defined the matrix D block diagonal, and dense K matrices which factorise the matrix A′
i,k.

II. MINIMAL CASE ANALYSIS

In order to simplify the analysis of minimal cases for the linear problem introduced in the previous section, we
consider the case that features can be observed in all images. Therefore, the number of measurements is 2MN ,
where M is the number of features and N denotes the number of frames. The state size is 1 + 1 + 3 + 3 = 8,
where include scalar a and b, 3 degree of freedom (DoF) velocity, I0vI0 , and 3DoF gravity, I0g. Thus, the necessary
condition is 2MN ≥ 8. We note that if one uses the quadratically-constrained least-squares this would remove
1DoF.

We can now identify the following cases for the number of available images, where we consider the base frame
I0 as the first one:

• N = 1: The necessary condition is not met, regardless of the number of features.
• N = 2: The necessary condition will never be met regardless of the number of features.
• N = 3: The necessary condition is met when M ≥ 2.
The below analysis follows that by Dong-Si and Mourikis [3, Appendix B] where we focus on the rank of the K

sub-matrix of the linear problem. For each case we show that there exists Gaussian eliminations which can simplify
the structure of the matrices, allowing for introspection.

A. Two Images (N = 2)

We first consider that there is one image at timestamp 0 with M features in total. Focusing on the K sub-matrix,
we can perform a column-wise Gaussian elimination:
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C3 + C4∼
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We can conclude through inspection of the row rank that:

rank(K) ≤ 8− 3 (33)

Thus this matrix is not full rank and the necessary condition will never meet regardless of the number of features.

B. Three Image (N = 3)

The K matrix for the case of a base image at time t0, and two extra images at t1 and t2 can be written as:
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R3M+i −Ri ∀i ∈ {1, ..., 3M}∼
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We can conclude through inspection of the row rank that:

rank(K) = min(3M + 3, 8) (37)

The necessary condition will be satisfied if 3N + 3 ≥ 8 ⇒ M ≥ 2. The minimal number of features is 2.
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