
Optimization-based VINS:
Consistency, Marginalization, and FEJ

Chuchu Chen - ccchu@udel.edu
Patrick Geneva - pgeneva@udel.edu
Yuxiang Peng - yxpeng@udel.edu
Woosik Lee - woosik@udel.edu

Guoquan Huang - ghuang@udel.edu

Department of Mechanical Engineering
University of Delaware, Delaware, USA

Robot Perception and Navigation Group (RPNG)
Tech Report - RPNG-2023-GRAPH
Last Updated - September 19, 2023

mailto:ccchu@udel.edu
mailto:ccchu@udel.edu
mailto:ccchu@udel.edu
mailto:ccchu@udel.edu
mailto:ghuang@udel.edu

Contents

1 Optimization-Based VINS 1
1.1 IMU Kinematic Constraints . 1
1.2 Feature Observation Constraints . 2
1.3 Batch MAP Formulation . 3

2 Marginalization and Consistency 4
2.1 State Marginalization . 4
2.2 System Observability . 6

3 Marginalization and FEJ 7
3.1 KEEP . 9
3.2 DROP . 9
3.3 MARG . 10
3.4 CKLAM . 10

4 Numerical Study 11

Appendix A rank(Afull
k′) and N(Afull

k′) 12

Appendix B rank(Amarg
k′) 15

Appendix C Example Bearing Factor Implementation 17

References 20

1 Optimization-Based VINS

v1

T0 T1

v0

T2

v2

f1 f2 f3

p0
u0 u1

z01 z11 z21

z12

z22
z03

z23

b0 b1 b2

Figure 1: Example visual-inertial factor graph of bearing observations z, inertial readings u,
and prior p0. The nodes (state variables) are represented as grey circles and edges (measure-
ments) connect their related states. fj denotes the jth feature, Ti is robot pose at ti, vi and
bi are the robot velocity and biases.

We formulate the nonlinear least squares (NLS) problem over the entire trajectory up to the
current time tk. The system state consists of the current navigation states, xk, and 3D features,
xf :

x0:k =
[
x⊤
0 . . . x⊤

k x⊤
f

]⊤
(1)

xk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g,k b⊤

a,k

]⊤
(2)

xf =
[
Gf1

⊤ . . . Gf⊤g
]⊤

(3)

where I
Gq̄ is the unit quaternionthat represents the rotation I

GR from global frame {G} to the
IMU frame {I}. Note that throughout the paper, x̂ is used to denote the current best estimate
of a random variable x with δx = x ⊟ x̂ denotes the error state. For the quaternion error state,
we employ JPL multiplicative error [1] and use δθ ∈ R3 defined by the error quaternion i.e.,
δq̄ = q̄ ⊗ ˆ̄q−1 ≃ [12δθ

⊤ 1]⊤. The “⊞” and “⊟” operations map elements to and from a given
manifold and equate to simple “+” and “-” for vector variables [2]. GpI and GvI are the IMU
position and velocity in {G}, respectively; bg and ba are the gyroscope and accelerometer biases;
and the feature state xf comprises the global position of g landmarks. A common visualization
technique in the optimization-based method is the “factor graph” [see Figure 1] for which states
are represented as graph nodes and measurements are represented as edges which connect to their
involve states.

1.1 IMU Kinematic Constraints

The inertial state is integrated forward using a series of IMU measurements u over a time interval
[ti−1, ti], consisting of linear accelerations Iam and angular velocities Iωm. The motion model can
be described based on the following generic nonlinear IMU function [3]:

g(x0:k,ui,wi) = xi+1 − f(xi,ui +wi) = 0 (4)

where the measurements ui are contaminated by zero-mean white Gaussian noises wi with covari-
ance Qi. Linearize the above equation we can derive the Jacobians with respect to state vector,

RPNG-2023-GRAPH 1

Eq. (1), and noise wi, respectively:

0 ≃ x̃i+1 −ΦIi x̃i −Giwi (5)

Φi :=
∂g

∂x0:k
=

[
0 · · · −ΦIi I · · · 0

]
(6)

Gi :=
∂g

∂wi
(7)

After linearization, the state translation matrix can be derived as [4]:

ΦIi =


Φ11 03 03 Φ14 03
Φ21 I3 I3∆t Φ24 Φ25

Φ31 03 I3 Φ34 Φ35

03 03 03 I3 03
03 03 03 03 I3

 (8)

with:

Φ11 =
Ii
Ii+1

R̂⊤ Φ14 = −Jr

(
Ii θ̂Ii+1

)
∆t Φ21 = −Ii

GR̂
⊤⌊Ξ2âi⌋ Φ24 =

Ii
GR̂

⊤Ξ4 (9)

Φ25 = −Ii
GR̂

⊤Ξ2 Φ31 = −Ii
GR̂

⊤⌊Ξ1âi⌋ Φ34 =
Ii
GR̂

⊤Ξ3 Φ35 = −Ii
GR̂

⊤Ξ1 (10)

and:

Ξ1 ≜
∫ ti+1

ti

exp
(
Iiω̂δτ

)
dτ Ξ2 ≜

∫ ti+1

ti

∫ s

ti

exp
(
Iiω̂δτ

)
dτds (11)

Ξ3 ≜
∫ ti+1

ti

Ii
Iτ
R⌊Iτ â⌋Jr

(
Iiω̂δτ

)
δτdτ Ξ4 ≜

∫ ti+1

ti

∫ s

ti

Ii
Iτ
R⌊Iτ â⌋Jr

(
Ikω̂δτ

)
δτdτds (12)

A comprehensive derivation of IMU preintegration can be found in CPI [5] or ACI2 [4], which we
have omitted in this technical report.

1.2 Feature Observation Constraints

The camera provides bearing observations of environmental 3D points. These observations can be
related to our states using the following measurement function (note that we here assume the global
3D feature model):

zij = h(x0:k) + nij (13)

=: Λ(Cifj) + nij (14)

Λ([x y z]⊤) =: [x/z y/z]⊤ (15)

Cifj = [x y z]⊤ = C
I R

Ii
GR

(
Gfj − GpIi

)
+ CpI (16)

where nij ∼ N (0,Rij) is the white Gaussian bearing measurement noise and {CI R, CpI} is the
camera-IMU rigid transformation. Linearizing the measurement function with respect to the cur-
rent state x̂i and f̂j we get the following:

zij ≃ h(x̂i, f̂j) +HIi(xi ⊟ x̂i) +Hfj (fj − f̂j) + nij (17)

= h(x̂0:k) +Hijx̃0:k + nij (18)

RPNG-2023-GRAPH 2

where Hij denotes the Jacobian evaluated at x̂0:k, it only contains non-zero blocks for the ith robot
state, xi, and the jth feature, Gfj , thus is computed as:

Hij :=
∂h

∂x0:k
=

[
0 · · · Hxi · · · 0

∣∣∣ 0 · · · Hfj · · · 0
]

(19)

with

Hxi = Hproj,i

[
Hθi Hpi 03×9

]
(20)

Hfj = −Hproj,iHpj (21)

Hθi = ⌊IiGR̂
(
Gf̂j − Gp̂Ii

)
⌋ (22)

Hpi = −Ii
GR̂ (23)

Hproj,i =
1

ẑi
2

[
ẑi 0 −x̂i
0 ẑi −ŷi

]
C
I R (24)

A code implementation can be seen in Appendix C.

1.3 Batch MAP Formulation

At timestep tk, the batch maximum a posteriori (MAP) seeks to solve for the history of the state
estimate x̂0:k by maximizing the posterior pdf leveraging: 1) prior information N (x̂0,P0), 2) IMU
motion constraints u (see Section 1.1), and 3) camera observation measurements z (see Section 1.2):

p(x0:k|Z0:k) ∝ p(x0)
k−1∏
i=0

p(xi+1|xi,ui)
∏

zij∈Z0:k

p(zij |xi, fj) (25)

where the set Z0:k denotes all measurements between [t0, tk]. Under Gaussian distribution assump-
tion, this pdf can be written as:

p(x0:k|Z0:k) ∝
1√

(2π)n|P0|
exp (−Cp0)

k−1∏
i=0

1√
(2π)d|Qi|

exp(−CIi)
∏

zij∈Z0:k

1√
(2π)m|Rij |

exp(−Cfij)

where n is the dimension of prior state x0, d denote the size of robot state xk andm is the dimension
of measurement zij . Maximizing the above pdf is equivalent to minimizing:

C(x0:k) = Cp0 +
k−1∑
i=0

CIi +
∑

zij∈Z0:k

Cfij (26)

where we define the following costs:

Prior: Cp0 =
1

2
||x0 ⊟ x̂0||2P0

(27)

Inertial: [5] CIi =
1

2
||xi+1 ⊟ f(xi,ui)||2Qi

(28)

Camera: [6] Cfij =
1

2
||zij ⊟ h(xi, fj)||2Rij

(29)

RPNG-2023-GRAPH 3

where ||a||2W := a⊤W−1a and can be solved iteratively given an initial linearization point. The
second-order Taylor series of the l-th iteration with linearization point x̂l

0:k is:

C(x̂l
0:k ⊞ δxl

0:k) ≃ C(x̂l
0:k) + bl⊤δxl

0:k +
1

2
δxl⊤

0:kA
lδxl

0:k (30)

where bl and Al are the linearized gradient and Hessian of the cost function, respectively.

bl = Γ⊤
0 P

−1
0 (x̂l

0 ⊟ x̂0) +
k−1∑
i=0

Φl⊤
i Q−1

i

(
x̂l
i+1 ⊟ f(x̂l

i,ui)
)
+

∑
zi,j∈Z0:k

Hl⊤
ij R

−1
ij

(
zij ⊟ h(x̂l

0:k)
)

(31)

Al = Γ⊤
0 P

−1
0 Γ0 +

k−1∑
i=0

Φl⊤
i Q−1

i Φl
i +

∑
zij∈Z0:k

Hl⊤
ij R

−1
ij Hl

ij (32)

where Γ0 =
[
In 0 . . . 0

]
with n = dim(x0) is the size of initial state x0. This indicates that

we add a prior factor to the initial state variables up to the time tk. The correction term and the
updated state x̂l+1

0:k can be solved by:

Alδxl
0:k = −bl ⇒ x̂l+1

0:k = x̂l
0:k ⊞ δxl

0:k (33)

Given initial state x̂0, this iterative algorithm will compute the global minimal estimates (MAP)
for the entire state x0:k given all available measurements within time period [t0, tk].

2 Marginalization and Consistency

Ideally, as the robot moves throughout the environment and observes new features, one could
reformulate the batch-MAP problem and solve the objective function, Eq. (26), using all available
measurements. This quickly becomes intractable as the size of the state becomes larger and becomes
prohibitively expensive (complexity is O(n3) in size of the state) for real-time estimation, and thus
requires marginalization of states to bound computational complexity.

However, this marginalization can cause issues because several states are permanently approx-
imated and fixed, which will result in different observability properties as compared to the batch-
MAP estimator. Particularly, the estimator erroneously believes it has gained information along
directions that it cannot measure and results in overconfident estimates. This inconsistency can be
a severe problem since it will also degrade the accuracy and make the estimator unreliable. In the
following sections, we explain the marginalization-related inconsistency in more detail.

2.1 State Marginalization

The graph is partitioned into the to-marginalize states xM , remaining states connected to xM are
xR (the Markov blanket), and new states not involved xN (See Figure 2). Before marginalization,
the MAP at time tk can be formulated as:

C(x0:k) = C(xM ,xR,xN) = Cmr(xM ,xR) + Crn(xR,xN)

where the cost term Cmr contains all terms involve states xM and xR only and Crn contains all
terms involve states xR and xN only. Note that once the states are marginalized they will not be

RPNG-2023-GRAPH 4

v1

T0 T1

v0

T2

v2

f1 f2 f3

p0
u0 u1

z01 z11 z21

z12

z22
z03

z23

b0 b1 b2

Figure 2: Example factor graph with different state definitions and Markov blanket. Red

nodes denote to-marginalize states xM =
[
T⊤

0 v⊤
0 b⊤

0

]⊤
, blue ones represent remaining

states xR =
[
T⊤

1 v⊤
1 b⊤

1 f⊤1 f⊤3
]⊤

, and the orange nodes are new states not involved

xN =
[
T⊤

2 v⊤
2 b⊤

2 f⊤2
]⊤

.

involved in any measurement functions after that timestamp. As such, there are no joint terms (cost
functions) containing both xM and xN . We can then derive the following minimization problem:

min
xM ,xR,xN

C(xM ,xR,xN) = min
xR,xN

(
min
xM

C (xM ,xR,xN)

)
= min

xR,xN

(
min
xM

Cmr(xM ,xR) + Crn (xR,xN)

)
(34)

To solve the above problem, we start with minimize Cmr at time tk with respect to xM as follows:

Cmr(xM ,xR) = Cp0 +
m−1∑
i=0

CIi +
∑

zij∈Z0:m

Cfij (35)

≃ C(x̂M (k), x̂R(k)) +

[
bmm(k)
brm(k)

]⊤ [
xM − x̂M (k)
xR − x̂R(k)

]
+

1

2

[
xM − x̂M (k)
xR − x̂R(k)

]⊤ [
Amm(k) Amr(k)
Arm(k) Arr(k)

] [
xM − x̂M (k)
xR − x̂R(k)

]
(36)

where x̂(k) denotes the best state estimate at time tk, b(k) and A(k) are the gradient and Hessian
matrix computed using x̂(k), respectively. The optimal value for xM can be derived by solving the
quadratic cost function as:

xM = x̂M (k)−A−1
mm(k) (bmm(k) +Amr(k)(xR − x̂R(k))) (37)

Substituting in Cmr we can get its minimal value:

min
xM

= Cmr(xM ,xR) ≃ α+ bp(k)
⊤ (xR − x̂R(k)) +

1

2
(xR − x̂R(k))

⊤Ap(k) (xR − x̂R(k)) (38)

where α is independent from state xR and xM , and

bp(k) = bmr(k)−Arm(k)A−1
mm(k)bmm(k) (39)

Ap(k) = Arr(k)−A−1
mm(k)Amm(k) (40)

RPNG-2023-GRAPH 5

The cost function with all states, Eq. (34), can then be approximated as:

C′(xR,xN) = bp(k)
⊤ (xR ⊟ x̂R(k)) +

1

2
(xR ⊟ x̂R(k))

⊤Ap(k) (xR ⊟ x̂R(k))

+

k′−1∑
i=m

1

2
||xi+1 ⊟ f(xi,ui)||2Qi

+
∑

zij∈ZA

1

2
||zij ⊟ h(x0:k′)||2Rij

(41)

where ZA is the active measurement set (all measurements involving state xR and xN). This cost
function is independent from the marginalized state xM . This is because Cmr has been approx-
imated by its sceond-order Taylor expansion (see Eq.(36) and Eq.(37)) and the information has
been “absorbed” into the optimization problem with the remaining state x̂R(k), the marginalized
gradient bp(k) and the marginalized information matrix Ap(k) at timestamp tk. Note that this
approximation will introduce small errors to the MAP problem but is able to bound the state size
to balance accuracy and efficiency. The minimization of cost function C′(xR,xN) at timestamp t′k
can then be solved iteratively, where the gradient and Hessian at the l-th iteration can be found
as:

bl = Γ⊤
r bp(k) + Γ⊤

r Ap(k)(x
l
R ⊟ x̂R(k))

+

k′−1∑
k=m

Φl⊤
i Q−1

i

(
xl
i+1 ⊟ f(xl

i,ui)
)
+

∑
zij∈ZA

Hl⊤
ij R

−1
ij (zij ⊟ hij(x0:k′)) (42)

Al = Γ⊤
r Ap(k)Γr +

k′−1∑
k=m

Φl⊤
i Q−1

i Φl
i +

∑
zij∈ZA

Hl⊤
ij R

−1
ij Hl

ij (43)

where Γr =
[
Ir 0 . . . 0

]
and r = dim(xR) is the size of remaining state. It is important to

note that in the above expressions, all the involved Jacoboians are evaluated using all the available
measurements up to timestamp tk′ .

2.2 System Observability

We now investigate the system observability properties before, tk and after marginalization, tk′ as
introduced in the previous section. This analysis follows the work of [7, 8] and [9] with the further
extension to include inertial biases.

To show the differences in observability properties between the full-batch MAP estimator and
the sub-optimal system with state marginalization, we will begin by examining the information
matrix in the batch-MAP estimator. Specifically, we can derive the information matrix at time tk′

as follows:

Afull
k′ =

k′−1∑
i=0

Φi(k
′)⊤Q−1

i Φi(k
′)

+
∑

zij∈ZM

Hij(k
′)⊤R−1

ij Hij(k
′) +

∑
zij∈ZA

Hij(k
′)⊤R−1

ij Hij(k
′) (44)

=

Amm(k′) Amr(k
′) 0

Arm(k′) Arr(k
′) Arn(k

′)
0 Anr(k

′) Ann(k
′)

 (45)

We note that all the Hessian matrix corresponding to all the states are evaluated at the latest
(most recent) timestamp tk′ , we use A(k′) to denote the linearization points for states that are

RPNG-2023-GRAPH 6

involved in this matrix. Similarly, we can derive the information matrix at time tk′ for the case
that state marginalization is performed to xM :

Amarg
k′ =

m−1∑
k=0

Φi(k)
⊤Q−1

i Φi(k) +
k′−1∑
i=m

Φi(k
′)⊤Q−1

i Φi(k
′)

+
∑

zij∈ZM

Hij(k)
⊤R−1

ij Hij(k) +
∑

zij∈ZA

Hij(k
′)⊤R−1

ij Hij(k
′) (46)

=

Amm(k) Amr(k) 0
Arm(k) Arr(k) +Arr(k

′) Arn(k
′)

0 Anr(k
′) Ann(k

′)

 (47)

It can be proved that [see Appendix A and B]:

rank(Afull
k′) < rank(Amarg

k′)

dim(N(Afull
k′)) > dim(N(Amarg

k′))
(48)

where N(A) is the nullspace of A. This implies that by performing marginalization, which fixes
the information related to the marginal and remaining states at time tk, spurious information has
been gained to cause a loss of nullspace dimension and leading to inconsistencies. We can inspect
the nullspace of Afull

k′ [see Appendix A]:

N(Afull
k′) =

[
N⊤
x0

· · · N⊤
xk′

N⊤
f0

· · · N⊤
fg

]⊤
(49)

Nxi =


i
GRg 03
⌊Gpi⌋g I3
⌊Gvi⌋g 03
03×1 03
03×1 03

 (50)

Nfj =
[
⌊Gfj⌋g I3

]
(51)

where g denotes the global gravity. For a more comprehensive explanation, we refer the reader to
Appendix A.

3 Marginalization and FEJ

In this section, we discuss how the first-estimates Jacobian (FEJ) method is leveraged to prevent
erroneous information gain due to marginalization. The key idea is to evaluate the Hessian using
the first estimate x̂R(k) instead of the current estimate x̂R(k

′) for all states xR involved with the
marginal (the second cost in Eq. (51)):

C(x(k)) ≃ C(x̂R(k
′), x̂N (k′)) + b(x̂R(k), x̂N (k′))⊤δx(k′)

+
1

2
δx(k′)⊤A(x̂R(k), x̂N (k′))δx(k′) (52)

where δx(k′) = [δxR(k
′)⊤ δxN (k′)⊤]⊤. Note that the linearization point of xR only needs to be

changed for the Hessian A(x̂R(k), x̂A(k
′)) and gradient b(x̂R(k), x̂N (k′)) computation, while the

residual and states which do not affect the observability properties can use the best estimates (e.g.,
biases, see Eq. (49)). Algorithm 1 outlines the process of performing FEJ.

RPNG-2023-GRAPH 7

Algorithm 1 Sliding-window optimization VINS with FEJ
Building factor graph and performing iterative optimization:

• Construct optimization problem using all measurements at
timestamp t(k′) [See Eq. (26)] and linearize the cost function:

– If state has FEJ value: use its First estimate x̂(k)
– Else: use its Update estimate x̂(k′)

• Correct the state iteratively [See Eq.(33)].
State marginalization:

• Select the state xM to be marginalize.
• If xR is connected to xM && in the nullspace [Eq. (49)] &&

not FEJ’ed: Set its current estimate as FEJ value.
• Perform state marginalization to calculate the new prior information

and gradient [see Eq. (39),(40)].

Implementation Guide: We perform simple “bookkeeping” of the xR

states that need to use their first estimates. During marginalization, we record
the current estimate as the FEJ for the states in xR which appeared in the
nullspace, see Eq. (49), as they impact the consistency. Subsequently, factors
connected to xR should use FEJ for the states which have been FEJ’ed, x̂R(k),
during Jacobian evaluation, while the others leverage the best estimate, x̂R(k

′)
or x̂N (k′).

For example, for a feature measurement that has not been involved in the marginalization but
is observed from a pose connected to the prior, the Jacobians should be evaluated using the best
feature estimate and the first pose estimate. In Appendix C, we furnish a straightforward code
example illustrating the application of FEJ with the camera-bearing measurement factor.

In what follows, we detail how marginalization strategies impact the connectivity of states to
the marginal prior and FEJ.

RPNG-2023-GRAPH 8

3.1 KEEP

FEJ Factor

FEJ State

Drop Factor

Marg. StateBest State

Best Factor

v1

T0 T1

v0

T2

v2

f1 f2 f3

p0
u0 u1

z01 z11 z21

z12

z22 z03

z23

b0 b1 b2

T2

v2

f2

p1

u1

z11

z21
z12

z22

z23

b1 b2

f1

T1

v1

f3

p0,u0

z01, z03

{ }

Figure 3: KEEP

The simplest case is marginalizing only the inertial
states and keeping a map of environmental features.
Shown in Figure 3, after marginalization, both fea-
tures and the oldest inertial states become involved
with the marginalized prior, thus requiring the fixing
of many states. Specifically:

• FEJ States: T1, v1, f1, f3 since they connect
to prior and are the “remaining” states (Markov
blanket).

• FEJ Factors: All factors besides z22 since it
connects to uninvolved states.

It is clear that while keeping features enables fu-
ture observations to be included to improve accuracy,
this method densifies the prior information which
increases the computational cost, and requires the
FEJ’ing of many states (e.g. most features).

3.2 DROP

v1

T0 T1

v0

T2

v2

f1 f2 f3

p0
u0 u1

z01
z11

z21

z12

z22 z03

z23

b0 b1 b2

T2

v2

f2

p1
u1

z11 z21

z12

z22

z23

b1 b2

f1

T1

v1

f3

{p0,u0}

Dropped
{z01, z03}

Figure 4: DROP

A method often leveraged is one which drops informa-
tion to retain sparsity of the prior [10, 11, 12]. Figure
4 illustrates that by dropping z01 and z03, the new
prior factor p1 is not involved with the feature states.
Specifically:

• FEJ States: T1, v1 since they connect to prior
and are the “remaining” states (Markov blan-
ket).

• FEJ Factors: All factors besides z21, z22, z23
since they connect to uninvolved states.

This method offers the benefit of improved sparsity and
avoids the need to perform FEJ on the feature states.
However, it comes at the cost of a new sub-optimal
problem containing less constrained information about
the features.

RPNG-2023-GRAPH 9

3.3 MARG

v1

T0 T1

v0

T2

v2

f1 f2 f3

p0
u0 u1

z01
z11

z21

z12

z22 z03

z23

b0 b1 b2

v2

f2

p1

u1

z12

z22

b1 b2

T1

v1

T2

p0,u0, z01, z11
z21, z03, z23

{ }

Figure 5: MARG

Another common case is to handle features that have
been lost or to reduce the state size by marginaliz-
ing features alongside the inertial state. As shown in
Figure ??, this marginal prior now relates to all poses
from which the features have been observed. Specifi-
cally:

• FEJ States: T1, v1, and T2 since they connect
to prior and are the “remaining” states (Markov
blanket).

• FEJ Factors: All factors have some portion of
their Jacobians FEJ’ed

In this case, the prior density has increased, but the
state size has decreased significantly, likely providing
significant computational benefits. However, a key
downside is that future feature observations cannot be
leveraged (i.e., they will be treated as new features),
and all poses need to be FEJ’ed, while the velocity
v2, the remaining feature f2, and biases are still not
needed.

3.4 CKLAM

v1

T0 T1

v0

T2

v2

f1 f2 f3

p0
u0 u1

z01
z11

z21
z12

z22 z03

z23

b0 b1 b2

f2

p1

z21

z22

z23

b2

f1 f3

f
′

1

z01

z11

p0,u0,u1

z01, z11

{ }

T2

v2

Dropped
z12, z03
f ′1 = f1

{ }

Clone Factor

Clone Feature

Figure 6: CKLAM

Another approach which we find promising is the CKLAM
marginalization technique [13] (which has been recently
adopted in [14]). As shown in Figure 6, to preserve the
sparse structure of the optimization problem, feature f1
is duplicated along with its measurements z01 and z11
connecting to the to-be-marginalized inertial states, and
then this new feature f ′1 is marginalized alongside the iner-
tial states. All other feature measurements (e.g., z12 and
z03) related to the to-be-marginalized states – which do
not sufficiently constrain their feature – are then dropped
while introducing a loss of information. Specifically:

• FEJ States: T2, v2 since they connect to prior
and are the “remaining” states (Markov blanket).

• FEJ Factors: All factors have some portion of
their Jacobians FEJ’ed

CKLAM reduces to the DROP case, see Section 3.2, when
only a single inertial state is marginalized (e.g. a sliding
window), while for multiple states it enables the inclusion

of feature observation information into the prior factor without increasing the computational com-
plexity and thus minimizes information loss. This allows for both computational and accuracy gain
for “shifting” window and keyframe-based VINS and makes CKLAM very alluring.

RPNG-2023-GRAPH 10

4 Numerical Study

We investigate how the different marginalization techniques are impacted by the use of FEJ and
different shifting window sizes. The results are shown in Table 1 and Figure 7. In general, it
can be seen that the KEEP method is able to have significant gains in accuracy and consistency
when leveraging FEJ, while the other marginalization methods are less sensitive to the use of FEJ.
In general FEJ is able to guarantee consistency and improve performance in most cases, thus we
recommend its use. It is worth noting that this report presents more complete simulation results.
For detailed simulation setups and discussions, we refer readers to the corresponding paper.

(a) 1 pixel noise (b) 3 pixel noise

Figure 7: Average ATE for 20 Gore dataset runs with different algorithms (see Table 1). FEJ denoted as “F” (empty)
and No-FEJ denoted as “N” (shaded). Colors indices different marginalization methods.

Table 1: Average ATE over the 20 Gore dataset runs for different image noise levels (e.g. 1 and 3 pixel) and the
number of marginalized inertial states. Time is reported just for optimization and marginalization (no covariance
recovery).

σ N Algo. ATE (deg/cm) NEES (3/3) Time (ms)

1
p
ix
el

im
a
g
e
n
o
is
e

m
a
rg
.
1
cl
o
n
e

F
E
J

KEEP 0.354 / 0.118 2.713 / 2.451 21.7 ± 8.1
DROP 0.966 / 0.259 3.039 / 2.667 12.5 ± 4.6
MARG 0.930 / 0.250 3.173 / 2.661 10.9 ± 4.5
CKLAM 0.966 / 0.259 3.039 / 2.667 12.4 ± 4.5

N
o
-F

E
J

KEEP 2.328 / 0.407 181.7 / 26.7 18.8 ± 6.6
DROP 0.931 / 0.259 2.946 / 2.781 10.6 ± 3.3
MARG 1.007 / 0.256 3.039 / 2.502 9.2 ± 3.8
CKLAM 0.931 / 0.259 2.946 / 2.781 10.2 ± 3.1

m
a
rg
.
3
cl
o
n
es F
E
J

KEEP 0.380 / 0.132 3.057 / 2.733 8.8 ± 10.5
DROP 0.919 / 0.289 2.661 / 3.103 5.2 ± 7.0
MARG 0.816 / 0.235 2.979 / 2.619 4.3 ± 5.9
CKLAM 0.907 / 0.280 2.664 / 3.079 5.1 ± 6.8

N
o
-F

E
J

KEEP 2.123 / 0.376 155.3 / 22.1 8.2 ± 9.3
DROP 1.104 / 0.299 3.027 / 3.010 4.7 ± 6.0
MARG 0.879 / 0.233 3.037 / 2.476 3.9 ± 5.2
CKLAM 1.002 / 0.287 2.952 / 2.926 4.5 ± 5.8

m
a
rg
.
6
cl
o
n
es F
E
J

KEEP 0.362 / 0.129 2.733 / 2.898 4.5 ± 7.6
DROP 1.186 / 0.331 2.900 / 2.777 3.1 ± 6.2
MARG 0.844 / 0.214 3.268 / 2.196 2.4 ± 5.1
CKLAM 0.854 / 0.261 2.548 / 2.639 3.0 ± 6.0

N
o
-F

E
J

KEEP 1.556 / 0.295 93.6 / 14.9 4.4 ± 7.1
DROP 1.403 / 0.350 3.415 / 2.951 2.6 ± 5.1
MARG 0.812 / 0.206 3.300 / 2.216 2.2 ± 4.5
CKLAM 1.048 / 0.277 2.997 / 2.740 2.6 ± 5.1

σ N Algo. ATE (deg/cm) NEES (3/3) Time (ms)

3
p
ix
el

im
a
g
e
n
o
is
e

m
a
rg
.
1
cl
o
n
e

F
E
J

KEEP 0.868 / 0.294 3.021 / 3.776 26.4 ± 9.2
DROP 1.827 / 0.542 2.909 / 2.895 14.8 ± 4.4
MARG 2.088 / 0.618 4.160 / 4.097 13.2 ± 4.7
CKLAM 1.827 / 0.542 2.909 / 2.895 14.5 ± 4.5

N
o
-F

E
J

KEEP 9.648 / 1.682 2226.5 / 115.1 21.6 ± 6.6
DROP 1.940 / 0.510 2.701 / 2.670 12.1 ± 3.0
MARG 3.143 / 0.657 4.504 / 3.572 10.0 ± 2.9
CKLAM 1.940 / 0.510 2.701 / 2.670 12.1 ± 2.9

m
a
rg
.
3
cl
o
n
es F
E
J

KEEP 1.038 / 0.326 3.551 / 3.930 10.6 ± 12.9
DROP 1.970 / 0.624 2.772 / 3.658 6.0 ± 7.9
MARG 2.036 / 0.635 3.986 / 6.374 5.1 ± 6.9
CKLAM 1.818 / 0.615 2.725 / 3.692 5.9 ± 7.8

N
o
-F

E
J

KEEP 10.492 / 1.811 3000.2 / 137.0 8.5 ± 9.6
DROP 2.210 / 0.626 3.371 / 3.639 5.8 ± 6.1
MARG 2.066 / 0.541 3.343 / 3.480 4.2 ± 5.5
CKLAM 2.104 / 0.601 3.244 / 3.462 4.9 ± 6.2

m
a
rg
.
6
cl
o
n
es F
E
J

KEEP 1.117 / 0.357 4.011 / 6.741 5.5 ± 9.6
DROP 2.421 / 0.725 2.884 / 3.759 3.3 ± 6.6
MARG 2.152 / 0.592 3.976 / 5.029 2.7 ± 5.6
CKLAM 2.113 / 0.611 2.917 / 3.802 3.4 ± 6.8

N
o
-F

E
J

KEEP 6.687 / 1.201 1381.9 / 57.6 4.5 ± 7.4
DROP 2.194 / 0.629 3.013 / 3.170 2.7 ± 5.3
MARG 1.748 / 0.443 3.414 / 2.893 2.3 ± 4.7
CKLAM 2.072 / 0.554 3.101 / 3.167 2.8 ± 5.4

RPNG-2023-GRAPH 11

Appendix A: rank(Afull
k′) and N(Afull

k′)

We start by analyzing the full information matrix Afull
k′ , it can be rewrite as:

Afull
k′ =

k′−1∑
k=0

Φi(k
′)⊤Q−1

i Φi(k
′) +

∑
zij∈ZM

Hij(k
′)⊤R−1

ij Hij(k
′) +

∑
zij∈ZA

Hij(k
′)⊤R−1

ij Hij(k
′) (53)

=



Φ0(k
′)

...
Φk′−1(k

′)

...
Hij(k

′)
...



⊤

︸ ︷︷ ︸
Ξ⊤(k′)



Q−1
0 0 0 0 0 0

0
. . . 0 0 0 0

0 . . . Qk′−1 0 0 0

0 0 0
. . . 0 0

0 0 0 0 R−1
ij 0

0 0 0 0 0
. . .


︸ ︷︷ ︸

S



Φ0(k
′)

...
Φk′−1(k

′)

...
Hij(k

′)
...


︸ ︷︷ ︸

Ξ(k′)

(54)

= Ξ⊤(k′)SΞ(k′) (55)

We can expend Ξ(k′) to be:

Ξ(k′) =



Φ0(k
′)

...
Φk′−1(k

′)

...
Hij(k

′)
...


=



−ΦI0(k
′) Ir . . . 0 0r×F

0
. . .

. . .
... 0r×F

0 0 −ΦIk′−1
(k′) Ir 0r×F

Hx0(k
′) 0 0 0 Hf1(k

′)
0 Hx1(k

′) 0 0 Hf2(k
′)

0 0
. . . 0

...
0 0 0 Hxk′ (k

′) Hfg(k
′)


(56)

It’s worth noting that we slightly abuse the notation for the sake of brevity. Specifically, we have
“group / stack ” the measurements based on robot pose. If at timestamp ti the robots observe li
features, then Hxi is an block vector, containing Jacobians with respect to robot state xi:

Hxi =


Hxij1

Hxij2
...

Hxijli


(m∗li)×r

(57)

where m is the measurement size (i.e. m = 2 for camera bearing measurement, Eq. (13)) and
r = dim(xi) is the size of the robot state at a single timestamp. On the other hand, Hfi contains
li block rows, where each row contains the Jacobian with respect to jth feature:

Hfi =


Hj1 0 · · · 0 0 · · · 0
0 Hj2 · · · 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 · · · Hjli
0 · · · 0


(m∗li)×F

(58)

where we have a total of g features represented in global and in 3D, the dimension of feature states
can be denoted by F := dim(xf) = 3g. From the initial time t0 to the final time tk′ , the size of the

RPNG-2023-GRAPH 12

robot state is denoted by R := dim(x0:k′) = r ∗ (k′− 1). Using these dimensions, we can specify the
dimensions of each block matrix in Eq. (56) as follows: dim(Φi) = r×R, dim(Hij) = m× (R+F),
dim(Hxi) = m×R, and dim(Hfj) = m× F .

It has been proved that the rank of the information matrix can be found as (see Lemma 1 [8]):

rank(Afull
k′) = rank(Ξ(k′)) = k′r + rank(Mk′) (59)

where Mk′ can be found as:

Mk′ =
[
Mxk′ Mfk′

]
(60)

=


Hx0ΦI0(k

′) Hf1(k
′)

Hx1(k
′)ΦI1(k

′)ΦI0(k
′) Hf2(k

′)
...

...
Hxk′−1

(k′)ΦI′k−1(k
′) · · ·ΦI1(k

′)ΦI0(k
′) Hfg−1(k

′)

Hxk′ (k
′)ΦI′k

(k′)ΦI′k−1(k
′) · · ·ΦI1(k

′)ΦI0(k
′) Hfg(k

′)


M×(r+F)

(61)

where M is the total size of feature measurements in the time period. One can note this is the
observability matrix that has an Identity state translation matrix for the features which are zero
dynamics. We can derive each block row as:

Hxk′ (k
′)ΦI′k

(k′) · · ·ΦI0(k
′) = Hproj,k′

k′
GR

[
Γ1 −I3 −(tk′ − t0)I3 Γ4 Γ5

]
(62)

Hfj (k
′) = Hproj,k′

k′
GR

[
0 · · · I3 · · · 0

]
(63)

Γ1 = ⌊Gfj − Gp0 − Gv0 −
1

2
g(tk′ − t0)

2⌋0GR⊤ (64)

Γ4 = ⌊Gfj − Gp0⌋k
′

GR
⊤Φ14 −Φ24 (65)

Γ5 = −Φ25 (66)

Note that Mk′ can be decomposed as:

Mk′ = Dk′Kk′ (67)

where Dk′ is a block diagonal matrix:

Dk′ =


. . .

Hproj,k′
k′
GR

. . .

 (68)

To find the rank of matrix Mk′ , we have (details are refer to 4.5.1 [15] and 3.2.2 [8]):

rank(Mk′) = rank(Kk′) (69)

where the ith block row of Kk′ can be computed as:

Kk′i
=

[
Γ1 −I3 −(tk′ − t0)I3 Γ4 Γ5

∣∣∣ 0 · · · I3 · · · 0
]

(70)

We can interpret that rank(Kk′) = 3g+11, where g is the total number of features [See Section [8],
Section 3.3.2, Lemma 7]. The rank of the information matrix can thus be found as rank(Afull

k′) =

RPNG-2023-GRAPH 13

k′r + 3g + 11. The nullspace for Afull
k′ can be computed as:

N(Afull
k′) =



Nx0

...
Nxk′

Nf0
...

Nfg


=



03
0
GR(k′)Gg

I3 −⌊Gp0(k
′)⌋Gg

03 −⌊Gv0(k
′)⌋Gg

03 03
03 03

...
...

03
k′
GR(k′)Gg

I3 −⌊Gpk′(k
′)⌋Gg

03 −⌊Gvk′(k
′)⌋Gg

03 03
03 03

...
...

I3 −⌊Gfj(k′)⌋Gg
...

...



(71)

This shows that the nullspace is of dimension 4. Note that this analytical nullspace can be related
to the ones well-studied in filter-based (e.g. an extended Kalman filter) systems [16, 17]. The ideal
VINS has been proved to have 4 DoF unobservable [16], the above analysis thus demonstrates that
if all states are linearized at the same time (e.g. batch-MAP), the linearized system has the same
number of unobservable directions.

RPNG-2023-GRAPH 14

Appendix B: rank(Amarg
k′)

The information matrix Amarg
k′ can be derived as:

Amarg
k′ =

m−1∑
k=0

Φi(k)
⊤Q−1

i Φi(k) +

k′−1∑
i=m

Φi(k
′)⊤Q−1

i Φi(k
′) (72)

+
∑

zij∈ZM

Hij(k)
⊤R−1

ij Hij(k) +
∑

zij∈ZA

Hij(k
′)⊤R−1

ij Hij(k
′) (73)

=



Φ0(k)
...

Φm−1(k)

Φm(k′)
...

Φk′−1(k
′)

...
Hij(k)

...

...
Hij(k

′)
...



⊤

︸ ︷︷ ︸
Ξ⊤(k,k′)



Q−1
0 0 0 0 0 0

0
. . . 0 0 0 0

0 . . . Qk′−1 0 0 0

0 0 0
. . . 0 0

0 0 0 0 R−1
ij 0

0 0 0 0 0
. . .


︸ ︷︷ ︸

S



Φ0(k)
...

Φm−1(k)

Φm(k′)
...

Φk′−1(k
′)

...
Hij(k)

...

...
Hij(k

′)
...


︸ ︷︷ ︸

Ξ(k,k′)

(74)

= Ξ⊤(k, k′)SΞ(k, k′) (75)

We can expend Ξ(k, k′) to be:

Ξ(k, k′) =



−ΦI0(k) I . . . 0 0 0 0 0

0
. . .

. . . 0 0 0
... 0

0 0 −ΦIm−1(k) I 0 0 I 0

0 0 0 −ΦIm(k
′) I . . . 0 0

0 0 0 0
. . .

. . .
... 0

0 0 0 0 0 −ΦI′k
(k′) I 0

Hx0(k) 0 0 0 0 0 0 Hf1(k)

0 Hx1(k) 0 0 0 0 0
...

0 0
. . . 0 0 0 0

...
0 0 0 Hxm−1(k) 0 0 0 Hfm−1(k)

0 0 0 0 Hxm(k
′) 0 0 Hfm(k

′)

0 0 0 0 0
. . . 0

...
0 0 0 0 0 0 Hxk′ (k

′) Hfg(k
′)



RPNG-2023-GRAPH 15

Similarly, the rank of the information matrix can be found as (See [8] Appendix A):

rank(Amarg
k′) = k′r + rank(M(k, k′)) (76)

where

M(k, k′) =
[
Mx(k, k

′) Mf (k, k
′)
]

(77)

=



Hx0(k)ΦI0(k) Hf1(k)
Hx1(k)ΦI1(k)ΦI0(k) Hf2(k)

...
...

Hxm−1(k)ΦIm−1(k) · · ·ΦI0(k) Hfm−1(k)

Hxm(k
′)ΦIm(k

′) · · ·ΦI0(k
′) Hfm(k

′)
...

...
Hxk′ (k

′)ΦIk′ (k
′) · · ·ΦI0(k

′) Hfg(k
′)


(78)

Similarly, the rank of M(k, k′) has been proved to be 3g+6 by Dong-Si and Mourikis [8], where g is
the number of features. Compare with rank(Afull

k′) mentioned in Appendix A, we notice that when
measurement Jacobians are estimated using two different state estimates for the state variables,
the rank of the information matrix for the entire states has increased by 1. However, this increase
in rank is not a result of any new measurements and is erroneous, leading to inconsistency. This
issue has also been discussed and addressed in filter-based frameworks [18, 16]. In a filter, the state
variables are not relinearized. As such, each state will have a different linearization point with
respect to the others.

RPNG-2023-GRAPH 16

Appendix C: Example Bearing Factor Implementation

1 class Factor_ImageReproj : public ceres::CostFunction {

2 public:

3

4 // Measurement observation of the feature (normalized coordinates)

5 Eigen::Vector2d uv_meas;

6

7 // Sqrt information matrix for this measurement

8 Eigen::Matrix<double, 2, 2> sqrtQ;

9

10 // FEJ values for each parameter (valid if is_fej is true)

11 // NOTE: is_fej should be set when performing marginalization

12 std::vector<double *> x_fej;

13 std::vector<bool *> x_is_fej;

14

15 // Camera to IMU transformation calibration (should be non-zero)

16 Eigen::Matrix3d R_ItoC = Eigen::Matrix3d::Identity();

17 Eigen::Vector3d p_IinC = Eigen::Vector3d::Zero();

18

19 Factor_ImageReproj(const Eigen::Vector2d &uv_meas_, double pix_sigma_,

20 const std::vector<double *> &x_fej_,

21 const std::vector<bool *> &x_is_fej_)

22 : uv_meas(uv_meas_), x_fej(x_fej_), x_is_fej(x_is_fej_) {

23

24 // Square root information inverse

25 sqrtQ = Eigen::Matrix<double, 2, 2>::Identity();

26 sqrtQ(0, 0) *= 1.0 / pix_sigma;

27 sqrtQ(1, 1) *= 1.0 / pix_sigma;

28

29 // Setup ceres

30 set_num_residuals(2);

31 mutable_parameter_block_sizes()->push_back(4); // q_GtoIi

32 mutable_parameter_block_sizes()->push_back(3); // p_IiinG

33 mutable_parameter_block_sizes()->push_back(3); // p_FinG

34

35 }

36

37 virtual ~Factor_ImageReproj() {}

38

39 bool Evaluate(double const *const *parameters, double *residuals,

40 double **jacobians) const override {

41

42 // Recover the current state from our parameters

43 // NOTE: these are the best estimates of our system state

44 Eigen::Vector4d q_GtoIi = Eigen::Map<const Eigen::Vector4d>(parameters[0]);

RPNG-2023-GRAPH 17

45 Eigen::Matrix3d R_GtoIi = ov_core::quat_2_Rot(q_GtoIi);

46 Eigen::Vector3d p_IiinG = Eigen::Map<const Eigen::Vector3d>(parameters[1]);

47 Eigen::Vector3d p_FinG = Eigen::Map<const Eigen::Vector3d>(parameters[2]);

48

49 // Transform the feature into the current camera frame of reference

50 Eigen::Vector3d p_FinIi = R_GtoIi * (p_FinG - p_IiinG);

51 Eigen::Vector3d p_FinCi = R_ItoC * p_FinIi + p_IinC;

52

53 // Normalized projected feature bearing

54 Eigen::Vector2d uv_norm;

55 uv_norm << p_FinCi(0) / p_FinCi(2), p_FinCi(1) / p_FinCi(2);

56

57 // Compute residual

58 // NOTE: we make this negative ceres cost function is only min||f(x)||^2

59 // NOTE: we have found the derivative of uv_meas = f(x) + n and thus

60 // NOTE: reformulate into a zero error constraint 0 = f(x) + n - uv_meas

61 Eigen::Vector2d res = uv_norm - uv_meas;

62 res = sqrtQ * res;

63 residuals[0] = res(0);

64 residuals[1] = res(1);

65

66 // Compute jacobians if requested by ceres

67 if (jacobians) {

68

69 // get the fej value if we have them

70 if (x_is_fej.at(0)[0]) {

71 q_GtoIi = Eigen::Map<const Eigen::Vector4d>(x_fej[0]);

72 R_GtoIi = ov_core::quat_2_Rot(q_GtoIi);

73 }

74 if (x_is_fej.at(1)[0]) {

75 p_IiinG = Eigen::Map<const Eigen::Vector3d>(x_fej[1]);

76 }

77 if (x_is_fej.at(2)[0]) {

78 p_FinG = Eigen::Map<const Eigen::Vector3d>(x_fej[2]);

79 }

80

81 // Recompute with FEJ'ed state values

82 p_FinIi = R_GtoIi * (p_FinG - p_IiinG);

83 p_FinCi = R_ItoC * p_FinIi + p_IinC;

84 uv_norm << p_FinCi(0) / p_FinCi(2), p_FinCi(1) / p_FinCi(2);

85

86 // Pinhole projection Jacobian

87 H_dz_dzn = sqrtQ * H_dz_dzn;

88 H_dz_dzeta = sqrtQ * H_dz_dzeta;

89 Eigen::MatrixXd H_dzn_dpfc = Eigen::MatrixXd::Zero(2, 3);

90 H_dzn_dpfc << 1.0 / p_FinCi(2), 0, -p_FinCi(0) / std::pow(p_FinCi(2), 2),

91 0, 1.0 / p_FinCi(2), -p_FinCi(1) / std::pow(p_FinCi(2), 2);

RPNG-2023-GRAPH 18

92 Eigen::MatrixXd H_dz_dpfc = sqrtQ * H_dzn_dpfc;

93

94 // Jacobian wrt q_GtoIi

95 if (jacobians[0]) {

96 Eigen::Map<Eigen::Matrix<double, 2, 4, Eigen::RowMajor>>

97 jacobian(jacobians[0]);

98 jacobian.block(0, 0, 2, 3) =

99 H_dz_dpfc * R_ItoC * ov_core::skew_x(p_FinIi);

100 jacobian.block(0, 3, 2, 1).setZero();

101 }

102

103 // Jacobian wrt p_IiinG

104 if (jacobians[1]) {

105 Eigen::Map<Eigen::Matrix<double, 2, 3, Eigen::RowMajor>>

106 jacobian(jacobians[1]);

107 jacobian.block(0, 0, 2, 3) = -H_dz_dpfc * R_ItoC * R_GtoIi;

108 }

109

110 // Jacobian wrt feature p_FinG

111 if (jacobians[2]) {

112 Eigen::Map<Eigen::Matrix<double, 2, 3, Eigen::RowMajor>>

113 jacobian(jacobians[2]);

114 jacobian.block(0, 0, 2, 3) = H_dz_dpfc * R_ItoC * R_GtoIi;

115 }

116 }

117 return true;

118 }

119 };

RPNG-2023-GRAPH 19

References

[1] Nikolas Trawny and Stergios I. Roumeliotis. Indirect Kalman Filter for 3D Attitude Estima-
tion. Tech. rep. University of Minnesota, Dept. of Comp. Sci. & Eng., Mar. 2005.

[2] Christoph Hertzberg, René Wagner, Udo Frese, and Lutz SchröDer. “Integrating Generic
Sensor Fusion Algorithms with Sound State Representations Through Encapsulation of Man-
ifolds”. In: Information Fusion 14.1 (Jan. 2013), pp. 57–77. issn: 1566-2535.

[3] Averil B. Chatfield. Fundamentals of High Accuracy Inertial Navigation. AIAA, 1997.

[4] Yulin Yang, B. P. W. Babu, Chuchu Chen, Guoquan Huang, and Liu Ren. “Analytic Com-
bined IMU Integrator for Visual-Inertial Navigation”. In: Proc. of the IEEE International
Conference on Robotics and Automation. Paris, France, 2020.

[5] Kevin Eckenhoff, Patrick Geneva, and Guoquan Huang. “Closed-form Preintegration Methods
for Graph-based Visual-Inertial Navigation”. In: International Journal of Robotics Research
38.5 (2019), pp. 563–586.

[6] Patrick Geneva, Kevin Eckenhoff, Woosik Lee, Yulin Yang, and Guoquan Huang. “OpenVINS:
A Research Platform for Visual-Inertial Estimation”. In: Proc. of the IEEE International
Conference on Robotics and Automation. Paris, France, 2020. url: https://github.com/
rpng/open_vins.

[7] Tue-Cuong Dong-Si and Anastasios I Mourikis. “Motion tracking with fixed-lag smoothing:
Algorithm and consistency analysis”. In: 2011 IEEE International Conference on Robotics
and Automation. IEEE. 2011, pp. 5655–5662.

[8] Tue-Cuong Dong-Si and Anastasios I. Mourikis. Motion tracking with fixed-lag smoothing:
Algorithm and consistency analysis. Tech. rep. University of California, Riverside, 2010. url:
https://intra.ece.ucr.edu/~mourikis/tech_reports/fixed_lag.pdf.

[9] Guoquan Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. “An Observability
Constrained Sliding Window Filter for SLAM”. In: Proc. of the IEEE/RSJ International
Conference on Intelligent Robots and Systems. San Francisco, CA, Sept. 2011, pp. 65–72.
doi: 10.1109/IROS.2011.6095161.

[10] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. “Keyframe-
based visual–inertial odometry using nonlinear optimization”. In: The International Journal
of Robotics Research 34.3 (2015), pp. 314–334.

[11] T. Qin, P. Li, and S. Shen. “VINS-Mono: A Robust and Versatile Monocular Visual-Inertial
State Estimator”. In: IEEE Transactions on Robotics 34.4 (2018), pp. 1004–1020.

[12] Vladyslav Usenko, Nikolaus Demmel, David Schubert, Jörg Stückler, and Daniel Cremers.
“Visual-inertial mapping with non-linear factor recovery”. In: IEEE Robotics and Automation
Letters 5.2 (2019), pp. 422–429.

[13] Esha D Nerurkar, Kejian J Wu, and Stergios I Roumeliotis. “C-KLAM: Constrained keyframe-
based localization and mapping”. In: 2014 IEEE international conference on robotics and
automation (ICRA). IEEE. 2014, pp. 3638–3643.

[14] Haomin Liu, Mingyu Chen, Guofeng Zhang, Hujun Bao, and Yingze Bao. “ICE-BA: Incre-
mental, consistent and efficient bundle adjustment for visual-inertial slam”. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, pp. 1974–1982.

[15] Carl D Meyer. Matrix analysis and applied linear algebra. Vol. 71. Siam, 2000.

RPNG-2023-GRAPH 20

https://github.com/rpng/open_vins
https://github.com/rpng/open_vins
https://intra.ece.ucr.edu/~mourikis/tech_reports/fixed_lag.pdf
https://doi.org/10.1109/IROS.2011.6095161

[16] J.A. Hesch, D.G. Kottas, S.L. Bowman, and S.I. Roumeliotis. “Consistency Analysis and
Improvement of Vision-aided Inertial Navigation”. In: IEEE Transactions on Robotics 30.1
(2013), pp. 158–176.

[17] Chuchu Chen and Guoquan Huang. FEJ2-EKF: A Consistent Estimator for SLAM (tech-
nical report). Tech. rep. RPNG-2022-FEJ2. University of Delaware, 2022. url: http://
chuchuchen.net/techreport/fej2.pdf.

[18] Guoquan Huang, Anastasios I. Mourikis, and Stergios I. Roumeliotis. “Observability-based
Rules for Designing Consistent EKF SLAM Estimators”. In: International Journal of Robotics
Research 29.5 (Apr. 2010), pp. 502–528. doi: 10.1177/0278364909353640.

RPNG-2023-GRAPH 21

http://chuchuchen.net/techreport/fej2.pdf
http://chuchuchen.net/techreport/fej2.pdf
https://doi.org/10.1177/0278364909353640

	Optimization-Based VINS
	IMU Kinematic Constraints
	Feature Observation Constraints
	Batch MAP Formulation

	Marginalization and Consistency
	State Marginalization
	System Observability

	Marginalization and FEJ
	KEEP
	DROP
	MARG
	CKLAM

	Numerical Study
	Appendix rank(Ak'full) and N(Ak'full)
	Appendix rank(Ak'marg)
	Appendix Example Bearing Factor Implementation
	References

