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Abstract
Dynamic environments challenge existing robot navigation methods, and motivate either stringent assumptions on workspace
variation or relinquishing of collision avoidance and convergence guarantees. This paper shows that the latter can be preserved
even in the absence of knowledge of how the environment evolves, through a navigation function methodology applicable to
sphere-worlds with moving obstacles and robot destinations. Assuming bounds on speeds of robot destination and obstacles,
and sufficiently higher maximum robot speed, the navigation function gradient can be used produce robot feedback laws
that guarantee obstacle avoidance, and theoretical guarantees of bounded tracking errors and asymptotic convergence to the
target when the latter eventually stops moving. The efficacy of the gradient-based feedback controller derived from the new
navigation function construction is demonstrated both in numerical simulations as well as experimentally.

Keywords Reactive navigation · Dynamic environments · Convergence · Non-point destinations

1 Introduction

Motion planning with obstacle avoidance is one of the oldest
problems in robot navigation, with a multitude of available
solutions that have been used in a wide range of applications,
from typical ones involvingmobile robots, manipulators, and
self-driving vehicles, to more novel ones such as no-contact
disinfection (Pandey et al., 2017; Tanner & Kyriakopou-
los, 2000; González et al., 2015; Tiseni et al., 2021). The
problem is considered solved given complete knowledge of
static robot environments (Minguez et al., 2008); however,
dynamic environments, where either the robot’s target or
the obstacles move, bring new unmet challenges (Mohanan
& Salgoankar, 2018). The need for robot navigation in
dynamic environments arises in many scenarios, including
autonomous driving (Fernandes et al., 2012), (UAV) target
tracking (Yao et al., 2015; Yadav et al., 2018), and human-
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robot interaction (Prassler et al., 2001; Li & Tanner, 2019).
One major challenge for motion planning and navigation
in dynamic environments is that given the temporal cou-
pling between path planning and trajectory generation (time
parameterization), the two subproblems have to be solved
simultaneously and in real-time (Mohanan & Salgoankar,
2018). Existing approaches for motion planning in dynamic
environments (Alonso-Mora et al., 2017; Wang et al., 2020;
Qi et al., 2021) typically iteratively solve the navigation prob-
lem over time, but in doing so it is not clear how to establish
global collision avoidance and convergence guarantees.

Several methods based on (RL) have recently appeared
[e.g. Francis et al. (2020)] to address problems of intercept-
ing and tracking moving targets in dynamic environments.
Another example is a belief abstraction approach which
allows for the incorporation of dynamic obstacles (Warnke et
al., 2020), which however needs to assume constant obstacle
speed. While more classical RL-based methods (Hasselt et
al., 2016) (Q-learning, sarsa algorithm) and their variants
(Xu et al., 2017) have been applied to robot navigation, it is
known that such methods can suffer from overfitting prob-
lems (Vasilopoulos et al., 2020), high computational cost and
no theoretical guarantee for convergence to a global optimum
(Wijmans et al., 2019; Faust et al., 2018).

Solutions based on iterative graph search-based (Ajanovic
et al., 2018; Ferguson& Stentz, 2006; Chen&Hwang, 1998)
or sampling methods (Elbanhawi & Simic, 2014; Karaman
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& Frazzoli, 2011), including (RRT) Zucker et al. (2007);
Fulgenzi et al. (2009); Wang et al. (2020); Qi et al. (2021)
or (PRM) (Van Den Berg et al., 2005; Jaillet & Simeon,
2004) can suffer from markedly heavy computation cost
when applied in high-dimensional dynamic environments
(Cai et al., 2018). A significant portion of this computa-
tional overhead is associatedwith the need to repeatedly solve
the motion planning problem as the workspace of the robot
evolves (Short et al., 2016). Additional computational chal-
lenges for sampling-basedmethods can be traced to a range of
different parameterswhich are not always directly controlled,
including poor sampling (Francis et al., 2020). This is where
feedback-based methods seem to have an advantage. These
methods are often overlooked due to the possible appearance
of spurious local minima that could prevent convergence;
however this is only an issue in formulations involving super-
position of attractive and repulsive vector fields (Olunloyo &
Ayomoh, 2009; Montiel et al., 2015). However, feedback-
based methods immune to this problem exist. One example
is the (VO) approach, where the robot’s velocity is selected
from admissible sets constructed based on the obstacles’
velocities (Alsaab & Bicker, 2014). Naturally, VO efficacy
hinges on the accuracy of obstacle motion measurement,
which can present challenges for fast loop closures (Chen et
al., 2020). Another feedback-based method immune to local
minima issues, is the harmonic field approach (Connolly,
1997). This approach is primarily for static environments,
since a direct extension to dynamic ones would involve the
iterative solution of nontrivial partial differential equations
(PDEs) in real time. Still, with some prior information about
the kinematics of moving obstacles (Aiushita et al., 1993;
Waydo &Murray, 2003) or target (Szulczyński et al., 2011),
some interesting results have been reported.

Navigation functions offer yet another option for over-
coming the challenge of local minima to guarantee almost
global convergence (Koditschek & Rimon, 1990; Rimon &
Koditschek, 1992). Their original construction, however, is
based on the assumption that the workspace is known and
static. Analytical feedback-based methods have attempted
to lift the assumption about a known environment by reac-
tively using sensor measurements (Vasilopoulos et al., 2020;
Arslan & Koditschek, 2019), yet they have not yet been
fully extended to dynamic environments (cf. Paternain et al.
(2018)). More evidence is needed to ascertain the potential
efficacy of such methods in dynamic environments (Iizuka
et al., 2014; Pradhan et al., 2011), and the quest for gener-
alization of navigation function methods to fully dynamic
environments reveals unmet technical challenges (Loizou et
al., 2003; Sun & Tanner, 2015; Li & Tanner, 2019; Shvalb &
Hacohen, 2019).

This paper meets some of the remaining challenges of
feedback-based navigation in dynamic environments with
moving obstacles and target, for the case of a dynamic sphere

Fig. 1 The Sphero Bolt robot

world where the robot has sufficient actuation bandwidth
to respond to environment variations. The methodology
expands the navigation function toolbox with a nontrivial
extension of prior work that combines moving destination
(Sun & Tanner, 2015) with moving obstacles (Chen et
al., 2020), and derives analytic conditions on the geomet-
ric parameters of the time-varying workspace, under which
the navigation function properties are uniform over time.
Based on these properties a feedback law is derived, for
which global collision avoidance is theoretically proven, and
asymptotic convergence to the target is guaranteed when
the latter eventually stops moving. This is achieved without
knowledge of obstacle or target kinematics, but rather under
the assumption that the robot has sufficient control authority
to outmaneuver any moving obstacle. This is a significant
advancement over prior work (Yadav & Tanner, 2021) that
achieved asymptotic stability on the basis of known moving
entity velocities.

The contributions, therefore, of this paper are:

(a) Proof that navigation functions built on sphere worlds
with time-varying destinations and moving internal
obstacles can be tuned to be free of local minima; and

(b) Proof of asymptotic convergence to an eventually settling
target for a robot steered using a time-varying navigation
function and without knowledge of obstacle velocities.

These claims are corroborated in simulations and experi-
ments with spherical mobile robots and obstacles (Fig. 1).

While the aforementioned results apply to idealized sphere
world environments, they are still significant for at least two
reasons:

(a) There existmethodological pathways to star-world exten-
sions (Li & Tanner, 2019), and

(b) There can still be real-world robot navigation scenarios
that conform to this model, as the one motivating this
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analysis and which involves spherical robots like the one
featuring in Fig. 1 engaging in child-robot play-based
interaction.

In these interactions we could have one such robot play-
ing games of chase in cluttered environments containing
other toys (possibly static robot balls), exploring the scien-
tific hypothesis that “smart” dynamic and mobile toys can
engage with children better than stationary “dump” toys. The
dynamic nature of the human subject which the robot should
intercept and the possibility of additionalmoving actors in the
scene (other robots or children) motivate the key features of
the problem statement presented in Sect. 2. Beyond Sect. 2,
which starts with some technical preliminaries, the paper is
organized as follows. Section 3 presents a solution roadmap
for formalizing the properties of the navigation function and
proceeds to refine this roadmapwith a sequence ofmathemat-
ical propositions, while Sect. 4 establishes the convergence
properties of a control lawbasedon thegradient of the naviga-
tion function. Simulation and experimental results are shown
in Sect. 5 validating the property of the navigation function
and convergence guaranteed by the gradient control law. Sec-
tion 7 concludes the paper and hints at directions for future
extensions.

2 Problem formulation

2.1 Notation and preliminaries

IfA ⊂ R
n is a set, and ε > 0 is a small constant,A(ε) is used

to express a neighborhood in the exterior A, including its
boundary ∂A. The size of this neighborhoodwill be described
later in terms of ε and a scalar function that implicitly defines
A as one of its level sets. We denoteAc the set’s complement
and Å its interior. By writing Āwe express the closure ofA,
i.e., its interior combined with its boundary. The expression
A \B denotes set difference, i.e., all points ofA that are not
in B. The gradient of f : R

n → R, denoted ∇ f , is treated
as a column vector, and if we need to highlight the variable
with respect to which we differentiate, say x , we write it as
∇x f .

2.2 Problem statement

Apoint robot at configuration x , is moving omnidirectionally
in a sphericalworkspace of radiusρ0, centered at the origin of
R
n and denotedW . TheworkspaceW is a spherical subset of

the n-dimensional Euclidean space, defined asW � R
n \B0,

where B0 � {x : ‖x‖ ≥ ρ0} is considered the exterior (to
the workspace) surrounding obstacle.

Assumption 1 The target’s and obstacles’ speeds, ẋT and ȯ j ,
respectively, are bounded,while the (point) robot canproduce
a speed ẋ of magnitude which significantly exceeds those of
its target and obstacles.

The objective of the robot is to converge to the exterior
boundary ∂BT of a ball around a moving target centered at
xT and has fixed radius rT , while avoiding collisions with the
outer boundary ∂B0 as well as with a set ofm ≥ 0 stationary
or moving spherical obstacles B j ⊂ W , with fixed radii
ρ j for j ∈ {1, . . . ,m}. The free workspace of the robot is
essentially W “punctured” by the internal obstacle spheres
B j :

F � W \
⋃

j∈{1,...,m}
B j .

Since all sets of interest (robot, obstacles, workspace bound-
ary) are assumed to be spherical, F is referred to as a sphere
world.

The free workspace F is assumed valid in the sense that

(i) All obstacle and target closures are in the interior of
the workspace, i.e., B̄T ⊂ W̊ and B̄ j ⊂ W̊ for j ∈
{1, . . . ,m}; and

(ii) None of these closures intersect with one another, i.e.,
∀ i, j ∈ {0, . . . ,m} ∪ {T }, B̄i ∩ B̄ j = ∅.

Assumption 2 [cf Koditschek and Rimon (1990)] Sphere
world F is valid in the sense that the boundaries of any two
spheres B� for � ∈ {0, . . . ,m}∪{T } are at least δ +√

ε apart
for some arbitrarily small δ > 0.

We will prescribe the minimal necessary separation
between workspace objects in Sect. 3 more formally. It is
further assumed that the robot at x knows the current loca-
tion and size of

(i) Every obstacle (o j and ρ j , respectively) and
(ii) Its target (xT and rT , respectively)

at time t , and that the speeds of the target and every moving
obstacle are bounded (Fig. 2).

3 Navigation function properties

3.1 Overview

Partition F as follows.

• The set near obstacles excluding the target: F0(ε) �⋃m
j=1 B j (ε) \ B̄T ;
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Fig. 2 Elements of workspace decomposition. a the set near the obsta-
cles F0(ε); b the set near the outer workspace boundary F1(ε)

• The set near the (outer) workspace boundary: F1(ε) �
B0(ε) \ (B̄T

⋃F0(ε)
)
;

• The set away from (any) workspace boundaries:F2(ε) �(
F̊ \ (F0(ε)

⋃F1(ε)
))⋃ B̄T ;

• The set away from any boundaries and target: F3(ε) �
F2(ε) \ BT (ε).

The approach to the problem of Sect. 2.2 involves
constructing a sphere-world navigation function ϕ(x)
(Koditschek & Rimon, 1990) and using its negated gradient
to steer the robot to its objective according to a control law
of the type ẋ = −∇x f (ϕ), where f is some differentiable
bijective function (see Fig. 3). Function ϕ is parameterized
by a positive (integer) constant k, which is chosen to give
ϕ its navigation function properties. With a slight—and for
the purposes of this work, inconsequential—departure from
their original statement (Koditschek & Rimon, 1990) these
properties are understood as follows:

Definition 1 [cf Koditschek and Rimon (1990)] A function
ϕ : R+ × F → [0, 1] is a navigation function if it is

(i) Continuously differentiable on R+ × F ,
(ii) Attains its minimum on ∂BT ,
(iii) Attains its maximum on ∂F , and
(iv) Is a Morse-Bott function on F̊ .

Themathematical roadmap for establishing the navigation
function properties for ϕ is as follows.

1. Identify the target boundary ∂BT as a non-degenerate
critical submanifold of ϕ;

2. Establish that no critical points of ϕ are on ∂F ;
3. Demonstrate that with appropriate parameter selection,

there can be no critical points in F3(ε);
4. Show that there exist an upper bound on ε, below which

no local minima of ϕ exist in F0(ε);

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3 A series of snapshots from a simulation study where the robot
navigates using the gradient of a navigation function within a dynamic
environment featuring two obstacles and a target moving on fixed, peri-
odic trajectories

5. Prove that there exists a lower bound on k above which
no critical point exist in F1(ε); and finally

6. Determine an appropriate choice of k forwhich all critical
points in F̊0(ε) are non-degenerate.

It is known that in two dimensions any potential field
defined on a manifold like F̊ \ B̄T will have at least as many
stationary points other than the motion planning destination
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as the number of interior obstacles (Koditschek & Rimon,
1990). A judicious choice of ϕ, however, can ensure that
these stationary points are saddles with have attraction sets
of measure zero. Denote S(t) the union of these regions of
attraction of those saddles, keeping in mind that in the case
considered here this set is time-varying. With the navigation
function properties in place, and assuming that x(0) /∈ S(0)
and that the robot has sufficient control authority relative to
its moving target and obstacles, we proceed to show that a
control law of the form u = −∇xϕ, which essentially ren-
ders F̊ \ (B̄T ∪ S(t)) positively invariant, also ensures that
the robot tracks its target boundary with bounded error, and
that if the target stops moving it will eventually asymptot-
ically converge to it. The end result of the methodology is
the emergence of navigation behaviors like the one featured
in Fig. 3, where the robot reactively avoids collisions and
deliberately seeks paths to its destination. More details on
the scenario of Fig. 3 is found in Sect. 5. The proofs of the
technical statements on the construction and properties of the
navigation function ϕ can be found in the Appendix.

3.2 Refinement of the solution roadmap

For each spherical obstacle B j define a smooth scalar func-
tion β j that attains negative values in B̊ j , is positive in Bc

j
and zero ∂B j . For the workspace boundaryB0 the situation is
reversed: B̊0 maps to positive values (indicating free space)
and the exterior maps to negative values. One choice for such
functions is

β j (t, x) � ‖x(t) − o j (t)‖2 − ρ2
j j ∈ {1, . . . ,m}

β0(x) � ρ2
0 − ‖x‖2 .

Now we are in position to define concretely the neighbor-
hoods of workspace boundaries as follows:

B j (ε) � {x ∈ F | 0 < β j (x) < ε} j ∈ {0, . . . ,m} .

It can be shown (using a triangle inequality for j ∈
{1, . . . ,m} and a reverse triangle inequality for j = 0) that
when x ∈ F3(ε), the robot is at least

√
ε away from the

workspace boundary. Thus the workspace validity property
“scales” with ε and regions near obstacle boundaries remain
always within the valid workspace, i.e., ∀ j ∈ {0, . . . ,m},
B j (ε) ⊂ F \ F3(ε).

The surface on the boundary of the ball around the
moving target, ∂BT , which is the destination surface of
the navigation function, can be formally captured as {x ∈
R
n|‖x − xT (t)‖2−r2T = 0}. As ametric of distance between

the robot and its destination surface we use the goal function

J (t, x) �
(
‖x − xT (t)‖2 − r2T

)2

whereas a surrogate of the distance between the robot and
boundary of the free space can be

β(t, x) � β0(x)
m∏

j=1

β j (t, x) .

The crux of the technical approach is to show first that for
the function

ϕ(t, x) � J (t, x)
[
J (t, x)k + β(t, x)

]1/k (1)

there exist a fixed positive real N (ε) > 0 such that for every
integer k > N (ε), (1) gives rise to a navigation function in
the sense of Definition 1.

The following sequence of propositions codify the
roadmap of Sect. 3.1. Their proofs are in the Appendix.

Proposition 1 The target boundary, ∂BT (t), is a non-
degenerate critical submanifold for ϕ.

Proposition 2 All critical points of ϕ are in F̊ .

Note now that ϕ as defined in (1), and ϕ̂ � J k/β share the
same critical points, and their type is identical (Koditschek&
Rimon, 1990). This fact is exploited to simplify the analysis
of the critical points of ϕ, using ϕ̂ in a surrogate role, as in
the following proposition.

Proposition 3 For every ε > 0 there exists an N (ε) > 0
such that if integer k ≥ N (ε) there are no critical points of
ϕ̂ = J k/β in F3(ε).

Proposition 4 In any valid workspace, ∃ ε0 such that ϕ̂ =
J k/β has no local minima in F0(ε), as long as ε < ε0.

Proposition 5 In a valid workspace, and for any δ > 0, there
exist a k1 > 0 such that if integer

k > k1 � 2m(ρ0 − δ)2

δ2
,

ϕ̂ has no critical points in F1(ε).

Proposition 6 With anappropriate choice of k, critical points
xc in the interior of F0(ε) are non-degenerate.

3.3 Summary

We can summarize the bounds derived within the proof of
each of the above propositions for the proximity toworkspace
boundary parameter ε and the tuning parameter k, in Tables
1 and 2, respectively. The design process that guarantees the
construction of a navigation function selects ε in a way that
respects all inequalities in Table 1, and then based on this
value of ε, k is selected to satisfy all inequalities in Table 2.
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Table 1 Summary of bounds on
ε in different propositions. An
admissible value for ε should
satisfy the conjunction of the
above conditions

Proposition Upper bound on ε

Proposition 4

ε < 2δ4(ρ0 − δ)m−1
[(

rd+δ
2ρ0−rd−δ

)2 + 1

]
·

{
6m(ρ0−δ)m−1(2ρ0−rd−δ)5

δ+rd
+ 32m(ρ0−δ)5

δ2

+2(2ρ0−rd−δ)4(ρ0−δ)m−1
[
(ρ0−δ)m−1+(m−1)(ρ0−δ)m−2

+m(m2 − 2m + 2)(ρ0 − δ)m−3 + (m − 1)2
}−1

Proposition 6 ε<
1−
√

1+ζ2
2

22m−3(m−1)ρm−3
0

Table 2 Summary of bounds on k in different propositions. For a choice
of ε consistent with Table 1, a value for k that satisfies the conjunction
of the above conditions is guaranteed to produce a navigation function

Propositions Lower bounds on k

Proposition 3 k ≥ 2(2m+1)(ρ0−δ)3

rd (
√

ε+δ)2

Proposition 5 k ≥ 2m(ρ0−δ)2

δ2

4 Proof of convergence

It can be shown that with prior knowledge of the target’s
[cf. Sun and Tanner (2015); Yadav and Tanner (2021)] and
obstacles’ trajectories, an appropriately constructed control
law can formally establish collision avoidance and conver-
gence of the robot to its destination. This paper shows that
even if these trajectories are unknown, with sufficient con-
trol authority the robot can track its target while avoiding
collisions, and if the target stops moving, it will eventually
converge to it.

Assume that the robot has the kinematics of a single inte-
grator, or that its dynamics can be feedback linearized in this
form:

ẋ = u x(0) = x0 ∈ F \ S(0) . (2)

Now define the control law as

u = −c∇ϕ(t, x) , (3)

where c > 0 is a constant control gain.

Proposition 7 The dynamics of the navigation function

ϕ(t, x) = J (t, x)

[J (t, x)κ + β(t, x)]1/κ
,

induced by robot control law (3) away from the zero-measure
attraction sets of its stationary points in a sphere worldF , is

input-to-state-stable (ISS) with respect to the speeds of robot
destination and obstacles.

Proof Consider the closed loop scalar dynamical system

ϕ̇(t, x) = ∂ϕ

∂t
+
(

∂ϕ

∂x

)ᵀ
u

=
(

∂ϕ

∂x

)ᵀ
u + ∂ϕ

∂β
β̇ + ∂ϕ

∂ J

∂ J

∂t
,

the dynamics of which, given ∂ J
∂t = ∂ Jᵀ

∂xT
ẋT , can be expanded

in the form

ϕ̇(t, x) =
{

β(t,x)
[J (t,x)κ+β(t,x)]1+1/κ

∂ J (t, x)

∂x

− 2J (t,x)
[∑m

j=1 β̄(t,x)[x−o j (t)]ᵀ−∏m
j=1 β j (t,x) xᵀ

]

κ[J (t,x)κ+β(t,x)]1+1/κ

}
u

+ 2J (t,x)
∑m

j=1 β̄ j (t,x)
[
x−o j (t)

]ᵀ

κ[J (t,x)κ+β(t,x)]1+1/κ ȯ j

+ 4β(t,x)
√
J (t,x)

[J (t,x)κ+β(t,x)]1+1/κ [xT (t) − x]ᵀ ẋT , (4)

where one can note that termsmultiplying [x−o j (t)]ᵀȯ j and
[xT − x]ᵀ ẋT are nonnegative in F̄ . The denominator term in
(4) can be recognized as

[
J (t, x)κ + β(t, x)

]1+1/κ =
[
J (t, x)

ϕ(t, x)

]κ+1

> 0

for all (t, x) ∈ R+ × F̄ . With some algebraic manipulation,
(4) can be brought to the form

[
κ [J (t, x)/ϕ(t, x)]κ+1

√
J (t, x)

]
ϕ̇ =

[
κ[J (t,x)/ϕ(t,x)]κ+1√

J (t,x)

](
∂ϕ

∂x

)ᵀ
u

+2
√
J (t, x)

m∑

j=1

β̄ j (t, x)[x − o j (t)]ᵀȯ j

+4κβ(t, x)[xT (t) − x]ᵀ ẋT . (5)
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Based on the properties of ϕ as established in the proofs of
Propositions 1 through 6 (see Appendices A and B), the sum
of the last two terms in the right hand side of (5) is upper
bounded:

2
√
J (t, x)

m∑

j=1

β̄ j (t, x)[x − o j (t)]ᵀȯ j

+4κβ(t, x)[xT (t) − x]ᵀ ẋT
< 2

√
J (t, x)

m∑

j=1

β̄ j (t, x)‖x − o j (t)‖ sup
t≥0

‖ȯ j‖

+4κβ(t, x)‖xT (t) − x‖ sup
t≥0

‖ẋT ‖

< 8κβ(t, x)ρ0 sup
t≥0

‖ẋT ‖ + 4
√
J (t, x)

m∑

j=1

β̄ j (t, x)ρ0 sup
t≥0

‖ȯ j‖

< κ(2ρ0)
2m+3 sup

t≥0
‖ẋT ‖ + m(4ρ2

0−r2T )(2ρ0)2m+2

2 sup
t≥0

‖ȯ j‖

= (2ρ0)
2m+2

[
2κρ0 sup

t≥0
‖ẋT ‖ + m(4ρ2

0−r2T )

2 sup
t≥0

‖ȯ j‖
]

< (2ρ0)
2m+3

[
κ sup
t≥0

‖ẋT ‖ + mρ0 sup
t≥0

‖ȯ j‖
]

. (6)

Therefore, once (3) is plugged into (5), it leads to

ϕ̇
(6)
< −c ‖∇ϕ(t, x)‖2 +

[
ϕ(t,x)
J (t,x)

]κ+1
(2ρ0)

2m+5

·
[
κ sup

t≥0
‖ẋT ‖ + mρ0 sup

t≥0
‖ȯ j‖

]
. (7)

The ratio ϕ(t,x)
J (t,x) = [J (t, x)κ + β(t, x)]−1/κ is upper and

lower bounded in F̄ , while ∇ϕ will always be nonzero
∀x /∈ S(t), from which point an application of the ultimate
boundedness theorem (Khalil, 2002) on the dynamics of ϕ

establishes the existence of a KL class function ξ and a K
class function γ such that

ϕ(t, x) ≤ ξ
(
t, ϕ(0, x0)

)+ γ
(
supt≥0{k‖ẋT ‖ + mρ0‖ȯ j‖}

)
.

��
Some remarks on (7) may be in order.

Remark 1 [Convergence]Theboundedness of the
[

ϕ(t,x)
J (t,x)

]κ+1

= [J (t, x)κ + β(t, x)]−1−1/κ term allows the selection of a
sufficiently large control gain c to overcome the disturbing
influence of the moving obstacles and target, which is lim-
ited via the finite values of supt≥0 ‖ȯ j‖ and supt≥0 ‖ẋT ‖,
respectively.

Remark 2 [Collision avoidance] Similarly, collision avoid-
ance under (3) is not unconditional; it relies on selecting a

gain c large enough to enable the robot to overcome the agility
of dynamic obstacles and target.

Remark 3 [Saddle points] While it can be readily verified a
priori whether the robot’s position is in S(t) at initial time,
the theoretical possibility that x(t) intersects with S(t) as
the latter moves inside the workspace over time, cannot be
eliminated. That said, given that S(t) is of zero measure and
time-varying, the probability that x(t) ∈ S(t) ∀ t > τ > 0
is practically zero.

In light of these observations and armed with Proposi-
tion 7, we move to the following claim:

Proposition 8 If the target eventually stops (ẋT = 0) and
with the conditions of Proposition 7 in force, there is a suffi-
ciently large control gain c > 0 to ensure the point robot (2)
under (3) asymptotically converges to its target.

Proof Assuming ẋT = 0 after some time τ > 0 (and given
that there is no memory in the system which means that x(τ )

can be considered a new initial condition), (7) can be restated
without its ẋT term, establishing ISSofϕ(t, x)with respect to
supt≥τ ‖ȯ j‖. At this point, ultimate boundedness arguments
can establish that for a sufficiently large c > 0 (the existence
of which is predicated on Assumption 1), ϕ(x, t) can reach
in finite time an arbitrarily small value ε > 0, after which
time the state x(t) will stay within the sublevel set {x ∈
F : ϕ(x) < ε}. Continuity now suggests that if this ε is
sufficiently small, the sublevel set {x ∈ F : ϕ(x) < ε}will be
contained in a small neighborhood of BT . Notice, however,
that (validity) Assumption 2 now forces BT to always be
at least some δ + √

ε away from any obstacle B j for j ∈
{0, . . . ,m}. As a result, for sufficiently small ε and for c > 0
adequately large to ensure finite-time positive invariance of
the sublevel set {x ∈ F : ϕ(x) < ε}, the BT neighborhood
that contains the latter will be disjoint from any B j for j ∈
{0, . . . ,m}.

The significance of this fact is the realization that using a
sufficiently large control gain, one can send the robot where
the obstacles cannot follow: once inside this sublevel set {x ∈
F : ϕ(x) < ε}, the robot has a straight shot to its target which
cannot be disrupted by the motion of the obstacles. While
not evident from (7), this view can be justified by (4) when
ẋT = 0 (as assumed). With the robot out of the obstacles’
reach (β j lower bounded in the sublevel set) and capable of
moving faster than them, there is only a finite time during
which the obstacles can maintain [x − o j (t)]ᵀȯ j > 0. After
that time, the second term in (4) can also be dropped:

ϕ̇ = −c ‖∇ϕ‖2 , (8)

establishing asymptotic convergence for ϕ. ��
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5 Numerical validation

Figure 3 illustrates in the form of snapshots how the time-
varying navigation function can steer the (pointmass) system
to its moving destination among two spherical obstacles that
oscillate thus varying the width of the allowable pathways
between them.

The figure is read from top left to bottom right; the ini-
tial position for the robot (see Fig. 3a) is marked as a point
in the bottom region of the spherical outer boundary of the
environment, whereas the moving destination is depicted as
the point at the upper portion, surrounded by a small (target)
sphere that the robot needs to converge to.

The target transcribes a circular motion within the top
region of the work space (above the two moving obstacles).
These two obstacles, arranged along the horizontal diameter
of the outer boundary, move back and forth in an oscillatory
motion on this line, with the same frequency and speed and
varying distance between them. The sequence of snapshots
in the figure depict the robot starting to move upward toward
its destination, attempting at first to pass in between the two
oscillating obstacles (Fig. 3b). Then the gap closes as the two
moving obstacles approach each other and the robot fails to
pass through in two consecutive attempts (Fig. 3c, d) and
backtracks. Then, being closer now and with the right timing
a gap opens (Fig. 3e), and the robot “sees its chance” to make
another run between them (Fig. 3f). Once through (Fig. 3g)
it has a clear shot to its goal (Fig. 3h).

In another scenario, depicted in Fig. 4, the obstacles are
coordinated deliberately to exhibit a “malicious” behavior
with respect to the robot, swarming around it in an attempt to
prevent it from reaching its target. In this scenario, therefore,
the obstacles do not follow fixed trajectories, but adapt their
motion reactively in response to the motion of the robot and
the target. Specifically, the obstacles move under the effect of
swarming cohesion & separation artificial forces, generated
as a negated gradient of an inter-agent potential function of
the relative distance di j between agents i and j having the
form V (di j ) = 1/(ν1di j )2+ log2(ν2di j ) (Tanner et al., 2003,
2005). The arrows marked on the obstacles in Fig. 4 denote
the direction of these artificial swarming forces. The swarm
interaction network between obstacles, target, and robot is
fully connected, but target and robot are indifferent to the
swarming interaction. In this scenario, the robot’s maximum
speed surpasses that of the obstacles by a factor of 3. As the
sequence of snapshots in Fig. 4 indicate, despite their intend,
the obstacles are not fast enough to block the robot which
outmaneuvers their cluster from the right.

Things can become more challenging, however, when
the relative actuation capacity between robot and obstacles
approaches unity. In an otherwise identical scenario to that
of Fig. 4, where the ratio of maximum speeds between robot
and obstacles falls to 2, the obstacles are able to move in a

coordinated fashion to block the robot from reaching its tar-
get (Fig. 5). (Although this scenario was not simulated for
longer time horizons than those of Figs. 3 and 4 to explore
if the robot eventually finds a successful circumnavigation
strategy.) Videos of the aforementioned scenarios are avail-
able at https://udspace.udel.edu/handle/19716/31417.

6 Experimental validation

The experimental testbed mirrors the simulation setup and
consists of a (virtual) outer workspace boundary marked by
black tape in Fig. 6a with ρ0 = 150 cm, one static obstacle,
one moving obstacle, and a moving target.

The Sphero™ robots used in this experiment are basically
differential drive vehicles with ability to turn in place. They
are controlled at a kinematic level using an api that prescribes
speed and bearing directives, accompanied by underlying pid
controllers that steer the vehicle to track these references. In
this sense, the kinematics of Sphero™ can be assumed to
adhere to the equations of a unicycle:

ẋ = v cos θ ẏ = v sin θ θ̇ = ω .

Given that only the (x, y) position is of interest here,
we can reasonably consider an input-output feedback lin-
earization process that would render the above kinematics
equivalent to those of a single integrator.

The obstacles and the destination are spherical robots; the
moving obstacle and the target are realized by Sphero™ bolt
robots, while the static obstacle and the interceptor robot are
realized by a Sphero™ sprk+ and a Sphero™ 2, respec-
tively; all these spheres have equal radii, and the volume of
the robot was taken into account whenmodelled as a point by
doubling the radius the control algorithm uses for the other
spheres to ρ1 = ρ2 = 20 cm. The target sphere around the
destination has radius rd = 25 cm. The objects are distin-
guished by their color led signature; the target emits blue
light, while the navigating robot emits red in Fig. 6a. The
moving obstacle and the destination follow circular trajecto-
ries, which are unknown to the robot. The location of every
object is determined in real time via color detection using a
light-tracking overhead RealSense d415 camera.

The latter’s limitations is the reason for the low (ambi-
ent light) exposure in Fig. 6a. Control and communication is
facilitated through theSpheroMulti-AgentRoboticTestbed,
while the robots’ kinematic commands are computed in
matlab and relayed through bluetooth. Figure 6a depicts
the initial workspace and robot configuration, with the robot
(red light) on the bottom right area of the workspace—the
outer boundary of which is marked with a black tape, and
the two moving objects (blue target, green obstacle) tracking
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 A series of snapshots from a simulation study featuring two
obstacles attempting to swarm around robot and target. Despite the
adversarial action, the robot still reaches its destination

circular trajectories outlined by thin dotted curves. None of
these trajectories is known to the robot.

The thicker circle around the target marks the surface of
BT around it, while a static obstacle is visible on the top
right. Figure 6b gives a snapshot of the steady state, where
the robot has navigated between the green moving and black
static obstacles, reached the surface of the target sphere and
tracks it as the target moves along its circular trajectory. A
video of the experimental run described is available at https://
udspace.udel.edu/handle/19716/31417.

Figure 7 shows the evolution of the value of the navi-
gation function as the experiment of Fig. 6 progresses over
a time window of one minute. The robot is initially close
—taking into account its volume, and given the parameter
tuning applied— to the outer workspace boundary, which is
why value for ϕ starts very close to its maximum, and then
very quickly decreases to its minimum of zero. The tem-
porary intermittent small increases evident in the graph of
ϕ are due to a combination of motion noise and use of raw

(a) (b)

(c) (d)

(e) (f)

Fig. 5 A series of snapshots from a simulation study featuring two
obstacles attempting to swarm around robot and target. In this case,
because the robot cannot move fast enough relative to the obstacles, the
latter succeed in blocking its path to its destination

andunfilteredmeasurements of the objects’ positions directly
from the overhead color tracking system. Steady state is prac-
tically reached within 8 seconds, and in the remaining time
the robot tracks the target as the latter goes around its circular
path, remaining close to ∂BT .

7 Conclusions and future work

There has been anecdotal evidence that the navigation func-
tion methodology can also be effective in time-varying
environments. This paper mathematically establishes the
truth of this conjecture through a series of propositions, the
proof of which offer explicit (albeit conservative) uniform
bounds on the function’s parameters. The paper accompanies
the proof of correctness of the time-varying sphereworld nav-
igation function with a proof of convergence for a negated
gradient-based control law. While the paper addresses the
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Fig. 6 Snapshots from experimental implementation
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Fig. 7 Evolution of the value of the navigation function during the
experiment with the boundary conditions of Fig. 6. Blue solid curve
gives the value of ϕ based on (unfiltered) position measurements; red
dashed curve indicates the expected evolution of ϕ in controlled simu-
lation conditions

key but idealized case of navigation in time-varying sphere
worlds where both destination and obstacles may be mov-
ing, there has already been work that paves the road toward
extensions to starworlds (Li&Tanner, 2019) andmulti-robot
systems (Yadav & Tanner, 2021).
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Appendix A Useful expressions

A.1 Gradients and Hessians for the obstacle function
ˇ

For β0(x) the gradient is found directly as:

β0 = ρ2
0 − ‖x‖2 �⇒ ∇β0 = −2x (A1)

For β j (t, x) with j ∈ {1 . . .m} it is

β j (t, x) = ‖x − o j (t)‖2 − ρ2
j

�⇒ ∇β j = 2[x − o j (t)] (A2)

The omitted product for an obstacle function β j (t, x) is
defined as Koditschek and Rimon (1990):

β̄ j �
∏m

l=0,l �= j βl

allowing the decomposition β = β j β̄ j . Thus the gradient of
β is found directly as:

∇β(t, x)
(A2,A1)=

−2x β̄0(x) + 2
m∑

j=1

[x − o j (t)]β̄ j (t, x) . (A3)

Based on the above, the fact that no obstacle radius is larger
than ρ0, and given the workspace validity assumption, one
can derive the bound

‖∇β(t, x)‖ ≤ 2(m + 1)(ρ0 − δ)m . (A4)

Noting that ∇2β j (t, x) = 2I where I is the identity
matrix, for any j ∈ {0,m} the Hessian of β expands as

∇2β(t, x) = ∇β j∇β̄
ᵀ
j + 2β̄ j I + ∇β̄ j∇β̄

ᵀ
j + β j∇2β̄ j .
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Based on the above expression, after taking norms, expand-
ing, and using recursion on ‖∇2β̄ j‖, one can arrive at

‖∇2β‖ ≤ 2(ρ0 − δ)m
[
(ρ0 − δ)m + m(ρ0 − δ)m−1

+(m + 1)(m2 + 1)(ρ0 − δ)m−2 + m2] , (A5)

which holds everywhere in F2(ε).

A.2 Gradient and Hessian of '̂

The gradient of ϕ̂ = J k/β can be written as

∇ϕ̂ = k J k−1

β2

(
β∇ J − 1

k
J∇β

)
. (A6)

At a critical point xc, ϕ̂ needs to satisfy ∇ϕ̂|xc = 0, meaning

β ∇ J |xc − 1
k J ∇β|xc = 0 . (A7)

It is noteworthy here that at a critical point of ϕ̂, the gradient
of J is in the same direction as that of β:

∇ J |xc (A7,A3)= −2β̄0xc + 2J

kβ

m∑

j=1

(xc − o j )β̄ j . (A8)

On the other hand, the Hessian

∇2ϕ̂ = (k∇ Jβ − J∇β) ∇
(
J k−1

β2

)ᵀ

+ J k−1
(
k∇ J∇βᵀ + kβ∇2 J − ∇β∇ Jᵀ − J∇2β

)

β2 ,

when evaluated at xc given (A7), reduces to

∇2ϕ̂|xc = J k−1

β2

(
k∇ J ∇βᵀ + kβ ∇2 J

−∇β ∇ Jᵀ − J ∇2β
)
|xc . (A9)

A.3 Gradient and Hessian of the goal function J

At an arbitrary x ∈ F , the gradient and Hessian of the goal
function J , are expressed, respectively, as

∇ J (t, x) =
{
4
√
J [x − xT (t)] x /∈ BT

−4
√
J [x − xT (t)] x ∈ BT

(A10)

and given the workspace validity assumption, for x /∈ BT

‖∇ J (t, x)‖ ≤ 4(2ρ0 − rT − δ)3 . (A11)

For the Hessian of the goal function we have

∇2 J (t, x) =
{
4
√
J I + 8[x − xT (t)][x − xT (t)]ᵀ x /∈ BT

−4
√
J I − 8[x − xT (t)][x − xT (t)]ᵀ x ∈ BT .

(A12)

Similarly, for x /∈ BT the norm of this matrix is uniformly
upper bounded as

‖∇2 J (t, x)‖ ≤ 12(2ρ0 − rT − δ)2 . (A13)

Appendix B Proofs

B.1 Proposition 1

Proof We first show that a vector v satisfying vᵀ∇2ϕ|xDv =
0 is tangent to ∂BT . For xD(t) ∈ ∂BT , it holds that
‖xD(t) − xT (t)‖2 − r2T = 0, implying that J and ∇ J both
vanish. Therefore, the gradient of ϕ at xD , written as (explicit
dependence of terms on x and t is dropped for brevity),

∇ϕ|xD = (J k + β)1/k∇ J − J∇(J k + β)1/k

(J k + β)2/k

∣∣∣∣
xD

= 0

indicating that xD is a critical point forϕ; given thatϕ(t, x) ≥
0 andϕ(t, xD) = 0, xD is aminimum. TheHessian ofϕ(t, x)
evaluated at xD is expressed as

∇2ϕ|xD = ∇ (∇ J (J k + β)1/k − J∇(J + β)1/k
)

(J k + β)2/k

∣∣∣∣
xD

+
(
(J k + β)1/k∇ J − J ∇(J+β)1/k

) (
∇(J k + β)−2/k

)ᵀ ∣∣∣∣
xD

= 8β−1/k(xD − xT )(xD − xT )ᵀ

from which it follows that

(a) ∇2ϕ|xD is singular, and
(b) The quadratic form vᵀ∇2ϕ|xDv is zero for any v ⊥ (xD−

xT ), where in xD − xT (t) we identify the radial vector
from the surface to the center of BT (t). Now xD − xT (t)
is in fact along the normal direction to ∂BT (t) given that
BT is a sphere; for anyw = λ[xD−xT (t)], λ ∈ R, notice
that wᵀ∇2ϕ|xDw = 8λ2β−1/k �= 0 and thus the Hessian
is nondegenerate in a direction normal to ∂BT (t).

��
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B.2 Proposition 2

Proof The proposition is falsified only when a critical point
exists in ∂F . We can show that this cannot happen. Since B j

for j ∈ {0, . . . ,m} do not intersect in a validF , any x0 ∈ ∂F
will necessarily be on a single ∂B�, for some � ∈ {0, . . . ,m}.
Then β�(t, x0) = 0 but ∇β�|x0 = 2[x0 − ol(t)] �= 0, while
∀ j ∈ {0, . . . ,m} \ {�}, β j (t, x0) > 0. Then, ∇ϕ|x0 reduces
to

∇ϕ|x0 = (Jk + β)1/k∇ J − J ∇(Jk + β)1/k

(Jk + β)2/k

∣∣∣∣
x0

=
(Jk + β)∇ J − J

k

(
k Jk−1∇ J + ∇β

)

(Jk + β)
1
k +1

∣∣∣∣
x0

β=0=

− J−k∇β|x0
k

β�=0= − J−k

k

m∏

j=0, j �=�

β j (t, x0)∇β�|x0 �= 0 .

��

B.3 Proposition 3

Proof Before we begin, it may be worthwhile to recall some
implications of Assumption 2:

(i) The robot is in the interior of Bc
0 (whose center is the

default origin of F) and
√

ε + δ away from its boundary,
i.e., ‖x − o0‖ = ‖x‖ ≤ ρ0 − √

ε − δ;
(ii) The distance of any obstacle center from the origin of

the workspace is upper bounded ∀ t ≥ 0, i.e., ‖o j (t)‖ ≤
ρ0 − ρ j − √

ε − δ

(iii) The distance between the robot andBT is upper and lower
bounded ∀ t ≥ 0, i.e., rT ≤ ‖x − xT (t)‖ ≤ 2ρ0 − √

ε −
δ − rT ; and

(iv) The distance between the robot and any interior obsta-
cle center is upper and lower bounded, i.e., ρ j <

‖x − o j (t)‖ ≤ 2(ρ0 − √
ε − δ) − ρ j .

At a critical point x ∈ W(ε) of ϕ̂ it is necessary that
β∇ J − 1

k∇β = 0, meaning that if k >
J‖∇β‖
β‖∇ J‖ , x cannot be

a critical point. The strategy therefore is to set k sufficiently
high so as to preclude the possibility of critical points in
W(ε). For this, it suffices to have

k ≥ sup
W(ε),t≥0

J

‖∇ J‖ sup
W(ε),t≥0

‖∇β‖
β

.

Let x ∈ W(ε), and suppose B j is the obstacle closest to
x . For x ∈ F2(ε) ⊂ W(ε), it holds that β j (t, x) ≥ ε, so

sup
F2(ε)

J (t, x)

‖∇ J (t, x)‖
(A10)= sup

F2(ε)

‖x − xT (t)‖2 − r2T
4‖x − xT (t)‖

≤ (ρ0−δ)2

rT
, (B14)

and similarly

sup
F2(ε)

‖∇β‖
β

≤ sup
F2(ε)

m∑

j=0

‖∇β j‖
β j

= sup
F2(ε)

2‖x‖
β0(x)

+ sup
F2(ε)

m∑

j=1

2‖x − o j (t)‖
β j (t, x)

≤ 2

(
√

ε + δ)2
sup
F2(ε)

{‖x‖

+
m∑

j=1

‖x − o j (t)‖
} ≤ 2(2m + 1)(ρ0 − δ)

(
√

ε + δ)2
. (B15)

Denote N (ε) the product of the suprema in (B14) and
(B15):

N (ε) � 2(2m + 1)(ρ0 − δ)3

rT (
√

ε + δ)2
.

Now if k ≥ N (ε), x cannot be a critical point. ��

B.4 Proposition 4

Proof Asufficient condition for a critical point of ϕ̂ not to be a
localminimum, is for theHessian of ϕ̂ evaluated there to have
at least one negative eigenvalue. Demonstrating the existence
of a negative eigenvalue essentially amounts to showing that
there exists a vector v ∈ R

n such that vᵀ∇2ϕ̂v < 0.
Toward this end, denote xc ∈ F0(ε) the critical point of ϕ̂

in question, and expand the gradient of the obstacle function
β(t, x) evaluated at xc, using omitted products:

∇β|xc =
m∑

l=1

2[xc − ol (t)]β̄l (t, xc) − 2β̄0(xc) xc

= 2(xc − o j )β̄ j + β j

⎡

⎣2
m∑

l=1,l �= j

(xc − ol )
β̄l
β j

− 2 β̄0
β j

xc

⎤

⎦

︸ ︷︷ ︸
α j

= 2(xc − o j )β̄ j + β jα j , (B16)

where we dropped the dependence of terms on t for brevity.
Now, given that xc /∈ BT is a critical point, and that k β ∇ J =
J ∇β, it follows

∇ J
(A10)= 4

(
‖xc − xT ‖2 − r2T

)
[xc − xT ]

(A8)= J

kβ
∇β

(B16)= J [2(xc − o j )β̄ j + β jα j ]
kβ

,

which one can manipulate to arrive at

xc − xT =
√
J

2k

(
xc − o j

β j
+ α j

2β̄ j

)
. (B17)
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Then, multiplying both sides of (A7) with ∇ Jᵀ and
expanding β using the omitted product of β j , yields

kβ ‖∇ J‖2|xc = J ∇βᵀ ∇ J |xc �⇒

kβ = β̄ j∇β
ᵀ
j ∇ J + β j∇β̄

ᵀ
j ∇ J

16‖xc − xT (t)‖2 . (B18)

Now in order for xc not to be a localminimum, it suffices to
show that there exists some vector v so that vᵀ∇2ϕ|xcv < 0
when ε is set sufficiently small. Indeed, take v to be a unit
vector orthogonal to ∇β j . Then,

β2

J k−1 v
ᵀ∇2ϕ|xcv

(A7)(A9)= Jβ j
1− 1

k
β̄ j

vᵀ∇β̄ j∇β̄
ᵀ
j v + kβvᵀ∇2 Jv

−2J β̄ j − Jβ jv
ᵀ∇2β̄ jv

(B18)= β̄ j∇β
ᵀ
j ∇ J + β j∇β̄

ᵀ
j ∇ J

16‖xc − xT (t)‖2 vᵀ∇2 Jv − 2J β̄ j +

vᵀ Jβ j

[
1− 1

k
β̄ j

∇β̄ j∇β̄
ᵀ
j − ∇2β̄ j

]
v

= β j

[∇β̄
ᵀ
j ∇ J vᵀ∇2 Jv

16‖xc−xT (t)‖2 + Jvᵀ
(
1− 1

k
β̄ j

∇β̄ j∇β̄
ᵀ
j − ∇2β̄ j

)
v

]

︸ ︷︷ ︸
B

+β̄ j

[
vᵀ∇2 Jv

16‖xc − xT (t)‖2∇β
ᵀ
j ∇ J − 2J

]

︸ ︷︷ ︸
A

. (B19)

Now expand the term vᵀ∇2 Jv in A into

vᵀ∇2 Jv
(A12)= 4

(
‖xc − xT (t)‖2 − r2T

)

+8
(
vᵀ[xc − xT (t)])2 (B17)= 4

√
J + J |vᵀα j |2

2k2β̄ j
2 ,

then substitute back

A =
4
√
J + J |vᵀα j |2

2k2β̄ j
2

16‖xc − xT ‖2 [8√J (xc − o j )
ᵀ(xc − xT )] − 2J

=
2J + J

3
2 |vᵀα j |2
(2kβ̄ j )

2

‖xc − xT ‖2 (xc − o j )
ᵀ(xc − xT ) − 2J .

It is known (Koditschek and Rimon (1990), Lemma 3.5) that
for any xT and o j in a valid workspace, the critical point xc
satisfies

(xc − xT )ᵀ(xT − o j ) ≤ ‖xT − o j‖
[√

ε + ρ2
j − ‖xT − o j‖

]
,

which leads to upper bounding A as by the quantity

2J

[
‖xT −o j‖

(√
ε+ρ2

j−‖xT −o j‖
)

‖xc−xT ‖2
(
1 +

√
J |vᵀα j |2
2(2kβ̄ j )

2

)
− 1

]

which can be shown to be negative. Indeed, given the

workspace validity assumption,
√

ε + ρ2
j − ‖xT − o j‖ <

√
ε + ρ2

j −(ρ j+rT +√
ε+δ) < 0.On the other hand, term B

ismultiplied byβ j < ε for in xc ∈ B j (ε). Therefore, bymak-
ing ε small enough, one can guarantee that vᵀ∇2ϕ|xcv < 0.
Specifically how small, can be determined as follows, first
by further upper bounding A for xc ∈ B j (ε):

A ≤ −2J
[
rT ‖xT −o j‖
‖xc−xT ‖2 + 1

]

≤ −2J
[

rT (rT +√
ε+δ)

(2ρ0−rT −√
ε−δ)2

+ 1
]

≤ −2(δ + √
ε)4

[
rT (rT +δ+√

ε)

(2ρ0−rT −δ−√
ε)2

+ 1
]

≤ −2δ4
[(

rT +δ
2ρ0−rT −δ

)2 + 1

]
. (B20)

Similarly,

B ≤ |∇β̄
ᵀ
j ∇ J |‖∇2 J‖

16‖xc − xT ‖2 + J‖ 1− 1
k

β̄ j
∇β̄ j∇β̄

ᵀ
j − ∇2β̄ j‖

≤ ‖∇β̄ j‖‖∇ J‖‖∇2 J‖
16‖xc − xT ‖2 + k−1

kβ̄ j
J‖∇β̄ j‖2 + J‖∇2β̄ j‖

≤ ‖∇β̄ j‖‖∇ J‖‖∇2 J‖
16(δ+rT )

+ (k−1)J‖∇β̄ j‖2
kβ̄ j

+ J‖∇2β̄ j‖
(A4,A11,A13)≤ 6m(ρ0−δ)m−1(2ρ0−rT −δ)5

δ+rT
+ 32m(ρ0−δ)5

δ2

+2(2ρ0−rT −δ)4(ρ0−δ)m−1
[
(ρ0−δ)m−1+(m−1)(ρ0−δ)m−2

+m(m2−2m+2)(ρ0−δ)m−3+(m−1)2
]

. (B21)

Using (B20) and (B21), (B19) allows for the derivation of a
lower bound on ε that would make vᵀ∇2ϕ|xcv negative:

β2vᵀ∇2ϕ|xc v
J k−1 ≤ β j B + β̄ j A ≤ 0

⇐� β j ≤ − (ρ0−δ)m−1A
B

⇐� ε ≤ 2δ4(ρ0 − δ)m−1
[(

rT +δ
2ρ0−rT −δ

)2 + 1

]

×
{
6m(ρ0−δ)m−1(2ρ0−rT −δ)5

δ+rT
+ 32m(ρ0−δ)5

δ2

+2(2ρ0−rT −δ)4(ρ0−δ)m−1
[
(ρ0−δ)m−1+(m−1)(ρ0−δ)m−2

+m(m2−2m+2)(ρ0−δ)m−3+(m−1)2
}−1

.

��
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B.5 Proof of Proposition 5

Proof By contradiction: assume xc ∈ F1(ε) is a critical

point. At a critical point, we know that ∇ϕ̂(xc) ≡ ∇ J k
β

=
0. We will show that an appropriate choice of k forces
∇ϕ̂ᵀ∇ J > 0 instead.

Since xc ∈ F1(ε) ⊂ B0(ε), the workspace validity
assumption forces a minimal separation between xc and xT :

‖xc‖ − ‖xT (t)‖ > δ . (B22)

Given that,

∇ Jᵀ∇β0
(A10),(A1)=

−8
√
J (xc − xT (t))ᵀ xc = 8

√
J
(
xT (t)ᵀxc − ‖xc‖2

)

≤ 8
√
J︸︷︷︸

>0

‖xc‖︸︷︷︸
>0

(‖xT (t)‖ − ‖xc‖)︸ ︷︷ ︸
<0

(B22)
< 0 . (B23)

Now expand ∇ϕ̂ᵀ∇ J and bound it as follows:

∇ϕ̂ᵀ∇ J
(A6)= k J k−1

β2

(
β ∇ J − J∇β

k

)ᵀ
∇ J

= J k

β2

(
kβ

J
∇ Jᵀ∇ J − ∇βᵀ∇ J

)

= J k

β2

(
16kβ‖x − xT (t)‖2 − ∇βᵀ∇ J

)

=
J kβ0

[
16kβ̄0‖x − xT (t)‖2 −

(
∇β̄

ᵀ
0 + β̄0

β0
∇β

ᵀ
0

)
∇ J
]

β2

(B23)
>

J kβ0

β2

(
16kβ̄0‖x − xT (t)‖2 − ∇β̄

ᵀ
0 ∇ J

)
.

To ensure ∇ϕ̂ᵀ∇ J > 0, one needs k >
∇β̄

ᵀ
0 ∇ J

16β̄0‖x−xT (t)‖2
and toward this end we obtain a supremum of that expres-

sion in F1(ε) as follows:

∇β̄
ᵀ
0 ∇ J

16β̄0‖x − xT (t)‖2 ≤ ‖∇β̄0‖‖∇ J‖
16β̄0‖x − xT (t)‖2

=
√
J

4‖x − xT (t)‖
‖∇β̄0‖

β̄0

≤ sup
F1

( √
J

4‖x − xT (t)‖

)
sup
F1

(‖∇β̄0‖
β̄0

)

≤ sup
F1

(
‖x−xT (t)‖2−r2T
4 ‖x−xT (t)‖

) m∑

l=1

(
sup
F1

2 ‖x−ol (t)‖
βl

)

< sup
F1

(
‖x−xT (t)‖

2 − r2T
2 ‖x−xT (t)‖

) m∑

l=1

(
sup
F1

‖x−ol (t)‖
δ2

)

≤ 2m(ρ0 − δ)2

δ2
� k1 ,

and k1 ≤ k, no critical points exist in F1(ε). ��

B.6 Proof of Proposition 6

Proof One way to establish non-degeneracy for a critical
point is to partition the tangent space on which ϕ̂ lies into
two subspaces, and ensure that a quadratic form vᵀ∇2ϕ̂v is
positive for all vectors v in one subspace, and negative for all
vectors v on the other (Koditschek andRimon (1990),Lemma
3.8).

If β j is the implicit function for the obstacle closest to crit-
ical point xc ∈ F0(ε), the proof of Proposition 4 established
that for v in the subspace that is orthogonal to ∇β j/‖∇β j‖,
vᵀ∇2ϕ̂ v < 0. So now consider the complement of the
aforementioned subspace, which is naturally spanned by
v̄ � ∇β j/‖∇β j‖. We want to verify that v̄ᵀ∇2ϕv̄ > 0.

Combining (A8) with (A9) yields

∇2ϕ̂|xc = J k−1

β2

(
kβ∇2 J + J (1−1/k)

β
∇β∇βᵀ − J∇2β

)
.

Let us now expand the expression

β2

J k−1 v̄ᵀ ∇2ϕ̂ v̄ =
v̄ᵀ
[
J
β

(
1 − 1

k

)∇β∇βᵀ − J ∇2β + kβ∇2 J
]
v̄ =

kβ v̄ᵀ∇2 J v̄ + J
(
1− 1

k

)

β

(∇βᵀ v̄
)2 − J v̄ᵀ∇2β v̄ , (B24)

and note that for small enough ε (Koditschek and Rimon
(1990),p. 435)

J‖∇β‖2
2kβ + J (1−1/k)

β

(∇βᵀ v̄
)2− J v̄ᵀ∇2β v̄ ≥ 0 .

Then to set the sign of (B24), it suffices to make

v̄ᵀ kβ∇2 J v̄ ≥ J‖∇β‖2
2kβ

. (B25)

To ensure that, first focus on the left hand side of (B25) and
recall (A12) for the Hessian of J at a critical point xc:

v̄ᵀkβ∇2 J v̄

(A10)= kβv̄ᵀ
(
4
√
J I + 8 (xc − xT (t)) (xc − xT (t))ᵀ

)
v̄

= 4kβ
√
J + 8kβ|v̄ᵀ (xc − xT (t)) |2 . (B26)

At the critical point xc we have J∇β = kβ∇ J and by
taking the squared norms of both sides we arrive at

4kβ
(A10)= J‖∇β‖2

4kβ‖xc − xT (t)‖2 . (B27)
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Now we plug (B27) back to (B26) and obtain the left hand
side of (B25) in the form:

kβ v̄ᵀ∇2 J v̄ = 4kβ
√
J + 8kβ|v̄ᵀ (xc − xT (t)) |2

= ‖∇β‖2 J 3/2 + 2J‖∇β‖2|v̄ᵀ (xc − xT (t)) |2
4kβ‖xc − xT (t)‖2 . (B28)

Given (B28), (B25) reduces to

√
J + 2|v̄ᵀ (xc − xT (t)) |2

2‖xc − xT (t)‖2 ≥ 1

⇐⇒ ‖xc − xT (t)‖2 − r2T
+2|v̄ᵀ (xc − xT (t)) |2≥ 2‖xc − xT (t)‖2 ⇐⇒
2|v̄ᵀ (xc − xT (t)) |2≥ ‖xc − xT (t)‖2 + r2T . (B29)

Assuming, without loss of generality, that for some j ,
xc ∈ B j (ε), means that v̄ᵀ = (

xc − o j (t)
)ᵀ

/‖xc − o j (t)‖
in which case (B29) becomes

2| (xc−o j (t))
ᵀ

‖xc−o j (t)‖ (xc − xT (t))|2 ≥ ‖xc − xT (t)‖2 + r2T . (B30)

Any critical point xc inside F0(ε) will be by definition
away from the target, i.e., ‖xc − xT (t)‖ > rT . There is there-
fore a ζ < 1 such that

rT = ζ inf
B j (ε)

‖xc − xT (t)‖ .

Now (B30) is implied if

(
xc − o j (t)

)ᵀ
(xc − xT (t))

‖xc − o j (t)‖‖xc − xT (t)‖ > 1 ≥
√
1 + ζ 2

2
. (B31)

Let us see, therefore, how the left hand side of (B31) can be
lower-bounded.

First, let us leverage (B17) to substitute for xc − xT (t)
in the left hand side of (B31) and lower bound it (dropping
indicators of time dependence for brevity) as

(
xc − o j

)ᵀ
(xc − xT )

‖xc − o j‖‖xc − xT ‖

≥

√
J (xc−o j )

ᵀ
4k

[
2(xc−o j )

β j
+ α j

β̄ j

]

√
J ‖xc−o j‖

4k

[
2‖xc−o j‖

β j
+ ‖α j‖

β̄ j

]

≥ 2‖xc − o j‖2/β j − ‖xc − o j‖‖α j‖/β̄ j

2‖xc − o j‖2/β j + ‖xc − o j‖‖α j‖/β̄ j

= 1 − β j‖α j‖/2β̄ j‖xc − o j‖
1 + β j‖α j‖/2β̄ j‖xc − o j‖

= 1 − β j‖α j‖/β̄ j‖xc − o j‖
1 + β j‖α j‖/2β̄ j‖xc − o j‖

≥ 1 − β j‖α j‖
β̄ j‖xc − o j‖

≥ 1 − ε‖α j‖
β̄ j‖xc − o j‖

. (B32)

Using the lower bound of (B32) in place of the left hand
side of (B31) yields a suitable ε that essentially enforces
(B25) through (B29):

1 − ε‖α j‖
β̄ j‖xc − o j‖

>

√
1 + ζ 2

2
⇐⇒ ε‖α j‖

β̄ j‖xc − o j‖
<

1 −
√
1 + ζ 2

2
⇐⇒ ε <

⎛

⎝1 −
√
1 + ζ 2

2

⎞

⎠

β̄ j‖xc − o j‖
‖α j‖ <

⎛

⎝1 −
√
1 + ζ 2

2

⎞

⎠ ρm
j

‖α j‖ .

To fix the bound on ε we produce an upper bound for α j as
follows (dropping temporarily again time dependency indi-
cators for brevity):

‖α j‖ =
∥∥∥2

m∑

l=1,l �= j

(xc − ol)
β̄l
β j

− 2 β̄0
β j
xc
∥∥∥

=
∥∥∥2

m∑

l=1,l �= j

(xc − ol)
m∏

a=1
l �=a �= j

βa − 2xc

m∏

b=1
0 �=b �= j

βb

∥∥∥

< 2
m∑

l=1
l �= j

sup
xc∈F0

‖(xc − ol)‖
m∏

a=1
j �=a �=l

βa − 2‖xc‖
m∏

b=1
0 �=b �= j

����� 0
ess inf βb

≤ 22m−3(ρ0 − √
ε − δ)2m−4

m∑

l=1
l �= j

(ρl + √
ε)

≤ (m − 1)(2ρ0)
2m−3 .

Given this bound on ‖α j‖, an upper bound ε′
3 on ε is set:

ε3
′ �

1 −
√

1+ζ 2

2

22m−3(m − 1)ρm−3
0

.

Tracing the thought trail back,

ε < ε3
′ �⇒ 1 − ε‖α j‖

β̄ j‖xc − o j‖
>

√
1 + ζ 2

2

�⇒ v̄ᵀ kβ∇2 J v̄ ≥ J‖∇β‖2
2kβ

�⇒ v̄ᵀ∇2ϕ v̄ > 0 ,

and the critical point xc ∈ F0(ε) cannot be degenerate. ��
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