
NeRF-VINS: A Real-time Neural Radiance Field Map-based
Visual-Inertial Navigation System

Saimouli Katragadda1, Woosik Lee1, Yuxiang Peng1, Patrick Geneva1,
Chuchu Chen1, Chao Guo2, Mingyang Li2, and Guoquan Huang1

Abstract— Achieving efficient and consistent localization with
a prior map remains challenging in robotics. Conventional
keyframe-based approaches often suffer from sub-optimal view-
points due to limited field of view (FOV) and/or constrained
motion, thus degrading the localization performance. To ad-
dress this issue, we design a real-time tightly-coupled Neural
Radiance Fields (NeRF)-aided visual-inertial navigation system
(VINS). In particular, by effectively leveraging the NeRF’s
potential to synthesize novel views, the proposed NeRF-VINS
overcomes the limitations of traditional keyframe-based maps
(with limited views) and optimally fuses IMU, monocular
images, and synthetically rendered images within an efficient
filter-based framework. This tightly-coupled fusion enables ef-
ficient 3D motion tracking with bounded errors. We extensively
validate the proposed NeRF-VINS against the state-of-the-art
methods that use prior map information, and demonstrate its
ability to perform real-time localization, at 15 Hz, on a resource-
constrained Jetson AGX Orin embedded platform.

I. INTRODUCTION

The ability to achieve high-accuracy localization is pivotal
for edge devices which have become prevalent through
computation miniaturization enabling AR/VR [1], [2] and
consumer drones [3], [4]. The ubiquitous use of cameras and
inertial measurement units (IMU) due to their low cost, low
power, and small size makes the Visual-Inertial Navigation
System (VINS) a critical component for the aforementioned
applications [5]. If no global information (e.g., GPS, loop-
closures, or a prior map), VINS can only provide ego-motion
tracking with ever-growing error. Over the past two decades,
a particular focus has been placed on leveraging a priori map
as additional costly sensors are not required [6]–[12].

A crucial component of successful map-based localization
is an accurate place retrieval algorithm such as DBoW
[13], placeless [14], or NetVLAD [15], which allows for
recovery of correspondence information to construct con-
straints to historical information. However, these methods
may be vulnerable to viewpoint variations, poor viewpoint
coverage limiting recall, scene ambiguities, and sensitivities
to environmental changes after mapping [16].

To address these challenges, in this work, we propose
to avoid the need for place recognition via the rendering
of novel synthetic views adjacent to the current state es-
timate, enabling high-quality and informative loop-closure
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constraints that are not susceptible to these failure modes.
Specifically, we introduce a new paradigm for map-based lo-
calization which leverages the recent Neural Radiance Fields
(NeRF) [17] advancements in deep learning to compress
the collection of images, e.g. a prior keyframe image map,
into a trained network, and then leverage during localization
the high-fidelity image rendering of synthesize novel camera
viewpoints. While the NeRF’s ability to accurately recon-
struct complex environments has encouraged researchers to
build dense NeRF maps [18], [19], we focus on achieving
real-time localization on edge devices with limited compu-
tational resources and thus look to leverage the comparably
cheaper novel viewpoint rendering via hashing [20]. To this
end, we effectively leverage NeRF as an a priori map and
maintain real-time drift-free VINS localization. The main
contribution of this work includes:

• We, for the first time, develop a real-time NeRF-VINS
algorithm that fuses a priori NeRF-based map in a
tightly-coupled manner to enable drift-free localization.

• We conduct extensive numerical studies to understand
the impact of different NeRF map construction methods,
descriptor algorithms on rendered NeRF views, and en-
vironmental changes, thus better informing our design.

• The proposed NeRF-VINS is among the first to demon-
strate centimeter-level drift-free pose estimates on an
edge platform (Jetson AGX Orin rendering at over 10
Hz) and outperform existing state-of-the-art methods.

II. RELATED WORK

In this section, we provide an overview of methods related
to visual and visual-inertial and NeRF-based localization.

A. Prior Map-based Classical Localization
Single-View Visual Localization: The classical structure-

based method is the Perspective-n-Point (PnP) solver within
a RANSAC loop for robustness [21], [22]. The 2D-3D
correspondences between the query image and a map points
are typically found through the matching of local feature
descriptors [23]–[27]. To mitigate the complexity increase
as the map size grows, image retrieval methods that narrow
down the search space typically retrieve top similar matches
(place recognition) and query keypoints in the region de-
fined by these images for correspondences (local matching)
[8], [28]. The quality of this approach heavily relies on
the effectiveness of the image retrieval methods. DBoW
[13] has gained great popularity thanks to its efficiency,
but recent deep learned-based HF-Net [8], which leverages
NetVLAD [15] and SuperPoint [29] for global retrieval and
local matching respectively, has demonstrated state-of-the-art



performance in localization tasks. Although there are end-
to-end deep learning methods available, their poor accuracy
and complexity still make structure-based methods appealing
[30]–[32]. Additionally, all discussed methods can suffer
from global descriptor ambiguities, particularly in scenarios
with sparse images or significant changes in viewpoint,
and poor recall due to limited view coverage of the scene
which we aim to address through the proposed NeRF-VINS
rendering paradigm.

Visual-Inertial Localization: As compared to single-view
visual localization, visual-inertial localization aims to con-
tinuously provide estimates against a prior map and can
leverage historical information to reduce the search space
and thus complexity. There is a rich literature, for which
we refer the interested reader to the references in [9] for a
summary. One which is of particular relevance to this work is
the open-sourced ROVIOLI [11] extension of ROVIO [33],
[34] which performs 2D-3D matches against an optimized
global map commonly constructed using maplab [11], [12].

SLAM Systems: In contrast to previous approaches that
construct maps offline for accurate localization, SLAM
builds maps online and utilizes them via loop closures. A
typical SLAM architecture includes a real-time thread for
camera pose tracking using sparse keypoints [35], [36] or
dense/semi-dense representations [37], [38], along with a
non-real-time thread that optimizes and constructs the map.
These methods use classical image retrieval techniques to
query images for loop closure, which can be affected by
limited viewpoint coverage and ambiguities.

B. Neural Radiance Fields
The work [17] introduced the NeRF methodology and

revolutionized scene representation, novel view generation,
and high-fidelity rendering. Later works such as BARF [39]
and NeRF [40] have shown that knowing the exact poses
is not required, while iMAP [41] and NICE-SLAM [42]
showed that the joint optimization of poses in respect the
NeRF can further improve performance. There additionally
have been works that have focused on map representation
[18], and the integration within SLAM [19], [43].

As compared to the online generation of NeRF maps, we
instead look to leverage a previously built NeRF to provide
high-quality loop-closure information and bound estimator
drift. Only a few works have focused on leveraging NeRF
to provide prior environmental information for the better-
ment of visual tracking. iNeRF [44] proposed to localize
camera poses by optimizing the photometric error between
the real and NeRF-generated images within a small static
environment context but remained sensitive to the initial
pose guess and large computational cost. More recently, Loc-
NeRF [45] was proposed to employ a particle filter to remove
the need for an initial guess. While this method does not
require any initial guess, it necessitates image rendering for
each particle, which could easily become computationally
prohibitive if using a large number of particles. Another work
similar spirit is by Adamkiewicz et al. [46] which leveraged a
pre-trained NeRF map to localize and additionally optimize
future trajectories. As compared to these works which are
constrained by rendering speed and their alignment compu-
tational complexity, the proposed NeRF-VINS combines the

Fig. 1: Overview of the proposed NeRF-VINS, where {G} is
the global VIO frame, {N} is the map frame, {K} denotes
the NeRF rendered image. {I} and {C} are IMU and camera
frame, respectively. Click on the image for a video demo.

novel viewpoint rendering strength with the efficient, and
accurate MSCKF-based VINS.

III. NERF-VINS ESTIMATOR DESIGN

Visual-inertial localization uses two main approaches:
graph optimization [36], [47] and filter-based methods [10],
[12], [48]. Graph optimization generally offers good accu-
racy, but is computationally demanding. In contrast, filter-
based approaches like the MSCKF [48] efficiently integrate
camera and IMU measurements, suitable for real-time appli-
cations. The MSCKF balances feature efficiency, avoiding
complexity growth, making it ideal for resource-constrained
real-time localization. The proposed NeRF-VINS estimator
extends the MSCKF [48], [49] to fuse the prior NeRF
map in a tightly-coupled manner (see Fig. 1). As such, for
presentation brevity, in the following, we will primarily focus
on visual measurement update.

In particular, at time tk, the system state xk consists of the
current inertial navigation states xIk , historical IMU poses
xTk

, and a subset of 3D environmental point features, xf :
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where I
Gq̄ is the unit quaternion (IGR in rotation matrix

form) that represents the rotation from the global {G} to
IMU frame {I}. GpI , GvI , and Gpfi are the IMU position,
velocity, and i’th point feature position in {G}; bg and
ba are the gyroscope and accelerometer biases. Note that
other state variables can be included, e.g., spatial-temporal
calibration, but have been omitted for clarity.

The state is propagated over time based on the IMU
measurements. A canonical three-axis IMU provides linear
acceleration, Iam, and angular velocity measurements, Iωm.
The IMU nonlinear kinematics is generically given by [50]:

xIk+1
= f

(
xIk ,

Iak,
Iωk,nIk

)
(4)

where nIk = [n⊤
g n⊤

a n⊤
wg n⊤

wa]
⊤; ng and na are Gaussian

white noises, and nwg and nwa are the random walk bias
noises of gyroscope and accelerometer, respectively. With
this model (4), we can perform EKF propagation of the state
estimate and covariance [48].

https://youtu.be/hR6R34G62Rs
https://youtu.be/hR6R34G62Rs


A. Measurement Update with Real Images
As in [49], bearing measurements of detected features seen

at time tk are modeled as follows:
zCk

= hc(xTk
,Gpf ) + nCk

:= Λ(Ckpf ) + nCk
(5)

Ckpf = C
I R

Ik
G R(Gpf − GpIk) +

CpI (6)

where Λ
(
[x y z]⊤

)
=

[
x/z y/z

]⊤
and nCk

is the white
Gaussian noise. Linearizing Eq. (5) yields the following
measurement residual:

rCk
= zCk

− hc(x̂Tk
,Gp̂f ) (7)

≃ HTk
x̃Tk

+Hfk
Gp̃f + nCk

(8)
where HT and Hf are the Jacobian matrix of the measure-
ment with respect to each state. We keep the long-tracked
features in the state till lost in order to leverage their future
observations, while the short-tracked features are updated via
the efficient MSCKF nullspace projection [48].

B. Measurement Update with NeRF Images
When a camera image reading is received, a NeRF render

is triggered at a pose with a small horizontal positional offset
(e.g., 10 cm, as in our experiments, in analogy to a stereo
baseline) to the current camera pose. This synthetic image
should have a significant overlapping field of view (FOV)
with the current real image, which facilitates high-quality
feature matching. The small positional offset also enables
robust triangulation and accurate feature matching between
the real and synthetic images even when the camera is static.

Once the rendering is completed, descriptor-based feature
matching is performed to the current image, where a 2D-
to-2D prior keyframe measurement model is leveraged [51].
For example, consider that from the rendered image we get
a bearing measurement, zNk

, which is related by [see (5)]:
zNk

= hn

(
Gpf

)
+ nNk

:= Λ(Kpf ) + nNk
(9)

Kpf = KpN + sKNR(NpG + N
GRGpf ) (10)

where s is the scale factor of the map and nNk
is the zero

mean Gaussian noise. Note that we model the bearing as
only a function of the feature Gpf , and consider the map
transform {s,NGR,NpG} to be known (see Sec. IV-C) and
the rendered camera pose {KNR,KpN} to have some known
orientation and position error {NG θ̃, N p̃G}. Thus, we have
the following linearized model:

rNk
= zNk

− hn(
Gp̂f ) = sHΛ

K
NRN

GRGp̃f + n′
Nk

(11)

n′
Nk

= sHΛ
K
NR(⌊NGRGpf×⌋NG θ̃ + N p̃G) + nNk

(12)
where HΛ is the measurement jacobian in respect to the 3D
point feature and ⌊·×⌋ is the skew-symmetric matrix. The
linearized model can be used to update the features in the
state or can be stacked with the real image measurements (8)
to perform (SLAM or MSCKF) EKF update.

IV. SYSTEM INTEGRATION

Armed with the NeRF-VINS estimation theory presented
in the previous section, we now describe how to integrate the
NeRF model and feature matching between synthetic and real
images to form a tightly-coupled system.

In particular, our system leverages the open-source Instant-
NGP [20] for rendering and prior map training. The Open-
VINS [49] frontend is modified to incorporate SuperPoint

Fig. 2: Example rendered images for testing matching meth-
ods. Left: Rendered image with resolution 424×240. Right:
Rendered image with 141×80 resolution and up-scaled to
424×240 with FSRCNN [52].

TABLE I: Average descriptor extraction time, number of
matches, and ATE reported on the UD AR Table 1-8 dataset
[60] for different matching methods utilizing the configura-
tion depicted on the right side of Fig. 2.

AKAZE BRISK ORB KAZE SP SP Opt.

Time (ms) 31 88 13 140 15 7
No. of Matches 55 85 20 117 31 30

ATE (deg/m) 2 FAIL 5 FAIL 6 FAIL 2.40 / 0.29 1.16 / 0.15 1.18 / 0.16

descriptors using Tensor-RT pipeline [53]. We used OpenCV
[54] and CUDA to convert GPU-rendered images to a 32bit-
float RGB image on the CPU. Additional care has been taken
to convert the NeRF-rendered image coordinate system to a
right-hand coordinate system by inverting the y and z axes
of InstantNGP. The code is written in C++ and CUDA and
runs on Jetson AGX Orin unless specified.

A. Feature Descriptor Selection
A crucial component is the ability to match features

between the current frame and the rendered NeRF viewpoint.
Thus significant effort has been spent to investigate the
performance of various feature matching methods such as
AKAZE [55], KAZE [56], BRISK [57], ORB [58], and the
selected SuperPoint (SP) [29]. For this test, we choose a
challenging scenario by rendering at (141×80) and upscaling
to 424×240 using FSRCNN [52], see Fig. 2. Shown in
Tab. I, the average descriptor extraction time, number of
matches between the rendered and current camera image,
and Absolute Trajectory Error (ATE) [59] of VINS for each
method have been compared. It is clear that the handcrafted
matching methods (AKAZE, BRISK, ORB, and KAZE)
often fail and show large errors which is expected due to the
limited fidelity in the up-sampled resolution NeRF image. On
the other hand, SuperPoint (SP) and its optimized variant (SP
Opt.) are shown to be robust to these conditions and report
the highest accuracy and shortest descriptor extraction time.
We thus select the optimized SuperPoint for its robustness
and efficiency for synthetic NeRF to real image matching.

B. Image Rendering and Feature Matching
Rendering NeRF images remains a computationally ex-

pensive operation even with state-of-the-art techniques [20].
On embedded devices like the Jetson AGX Orin, it takes
approximately 660ms (2Hz) to render an image with di-
mensions 424×240. To improve render speed and minimize
loop-closure latency, we use a two-step process. Initially, we
generate NeRF renders at half resolution (212×140). Then,
we employ the lightweight FSRCNN [52] for up-sampling to
the original size of 424×240. This approach strikes a balance
between computational speed and image quality (see Fig.



Fig. 3: Qualitative study of failure cases of classical place recognition method. Green and Red lines indicate inliers and
outliers, respectively. Input image (left of each column) and retrieved, rendered for the NeRF case (resolution 212×140 and
upsampled to 424×240), image is shown (right of each column). Images are shown in color for visualization purposes.

Fig. 4: Qualitative comparison of NeRF Map trained with
different methods using 543 keyframe images. The top row
shows the PSNR histograms and the bottom row shows
exemplary images rendered from each method.

2 and Tab. I for the extreme case of 141×80 resolution).
We further reduce the resolution levels and the hashing size
of the model in InstantNGP [20] and minimize multiple
CPU copies by directly transferring rendered images to our
localization pipeline for descriptor extraction.

The rendering is run on a separate thread to prevent
blocking of the real-time VINS. The SuperPoint feature
matching network has been modified to use a lightweight
ResNet18 [61] and optimized to support a 16-bit floating
point using TensorRT [53]. This secondary thread, which
performs rendering and matching, runs at 15Hz on the Jetson.
Additional timing details are reported in [62].

C. Offline NeRF Map Generation

Another foundational component is the ability to build and
train a prior NeRF map which can be leveraged online (see
Fig. 1 top half). The first challenge is to recover accurate
camera poses which can then be used in conjunction with
images to train the NeRF model. Three different methods
were investigated: (i) Visual Bundle Adjustment (BA) via
COLMAP [26], [27], (ii) Visual-Inertial BA via maplab
[12], and (iii) fusion of OptiTrack poses with IMU via

vicon2gt [63]. We leveraged the keyframing selection in
maplab to select a subset of 543 of poses which both
COLMAP and maplab optimized.

Analyzing the results of the Table 5 dataset in Fig. 4, we
observe clear variation in Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity Index (SSIM) [17]. COLMAP’s
up-to-scale Visual BA yields superior values, albeit at the
expense of significant computation to optimize the camera
poses. Conversely, the Visual-Inertial BA in maplab did
take less time to optimize, but suffers in PSNR whose
blurriness can be seen in the exemplary images. A similar
trend is observed in the vicon2gt OptiTrack+IMU results,
indicating that while the fusion of inertial information accel-
erates optimization time and provides scale information, it
does not improve visual reconstruction quality, likely due to
calibration and sensor synchronization errors in this dataset.
We additionally conjecture that IMU-aided methods likely
do not fully minimize visual reprojection errors to the same
degree as COLMAP, potentially leading to suboptimal poses
for desired geometric reprojection errors crucial for high-
quality NeRF creation. We thus opted to use the up-to-
scale COLMAP poses for training the NeRF. These poses
were aligned to the groundtruth poses based on similarity
transformation (sim3) to remove the scale ambiguity. For
each dataset we assume that the proposed NeRF-VINS has
been initialized in the NeRF prior map and directly leverage
a pre-computed map transform.

V. EXPERIMENTAL VALIDATION

We validate the proposed NeRF-VINS and baseline meth-
ods on the recently released AR Table Dataset [60]. This
dataset is ideal for NeRF reconstruction due to its object-
centric trajectories which observe a table placed centrally.
This dataset additionally enables us to evaluate the robustness
of algorithms to changing environments (see Fig. 5), due to
the addition of a whiteboard for the three datasets (Table
5-7) and the moving of the table to the side of the room
in Table 8. Unless specifically noted, all prior map methods
leverage Table 1 for datasets 1-4 and Table 5 for 5-7.



Fig. 5: Exemplary environment configurations in [60].

In particular, for comprehensive validation, we evaluated
the following state-of-the-art methods:

1) Single-Shot Visual Localization: The open-source
Hierarchical Localization (HLoc) system [8] that used
NetVLAD for image retrieval, and SuperPoint [29] descriptor
establishes a baseline for expected state-of-the-art perfor-
mance. In this system, local matching is performed using
a nearest-neighbor search with a ratio test and geometric
verification, which aligns with our pipeline. Notably, the
use of Lightglue [64] matching remains computationally
expensive (16 ms for a pair, thus 800 ms for top 50 on
A3000 GPU) and did not yield substantially better results in
the evaluated dataset. The same images and poses that are
used to train the NeRF are leveraged in its map. We evaluated
the performance with the top 5 and 50 nearest neighbor
matches: HLoc (top5) and HLoc (top50), respectively. Due
to its single-shot nature, we found that for many image
localization accuracy was poor, and thus in most results
presented we select an inlier set of good quality success to
provide a reasonable comparison. Note that this contrasts the
below map-based methods and proposed NeRF-VINS which
provide continuous estimates.

2) Map-based Visual-Inertial Localization: For map-
based VINS, the filter-based ROVIO with additional re-
localization module [34] (ROVIOLI) from maplab [12]
provides one of the closest direct comparisons to the pro-
posed method. We report the accuracy of both the odom-
etry, ROVIOLI, and the map-aided, ROVIOLI+Map, which
leverages the maplab optimized prior map with the same
keyframes used to train the NeRF. VINS-Fusion (VF) [65],
is additionally compared against as it has support to re-
localization against a previous-built relative pose graph using
DBoW2 [13]. Thus we run VF on the prior map dataset to
generate a pose graph that is then leveraged for sequential
datasets (e.g. the whole dataset Table 1 is processed, as
compared to the proposed which uses only a small subset
of keyframes). Both the odometry, VF, the secondary pose
graph without relocalization, VF+Loop, and then the sec-
ondary thread which is able to relocalize against the prior
map pose graph, VF+Loop+Map, are evaluated.

A. Localization Accuracy

Tab. II shows the ATE of all methods including the
proposed method on our desktop (termed Nerf-VINS (D))
equipped with an A4500 NVIDIA graphics card and on
Jetson AGX Orin (termed Nerf-VINS (J)), we also provide
odometry methods as a reference to show that we are able
to improve the system we build on (i.e OpenVINS). It is
clear that our proposed method achieved one of the best
accuracy over all algorithms while HLoc showed competing
results (note we excluded large failures of HLoc from statis-
tics). An interesting observation is that VF reported higher
accuracy than VF+Loop which was due to multiple false

Fig. 6: Boxplot of the RPE [59] statistics run with the same
setting as Tab. II. The box spans the first and third quartiles,
while the whiskers are the upper and lower limits.

loop closures induced by incorrect DBoW matching. This
poor performance is shown by other methods which leverage
DBoW, showing the need for novel view synthesis.

The Relative Pose Error (RPE) [59] over all datasets (see
Fig. 6) highlights the significant advantage of incorporating
NeRF map features, which effectively mitigates drift and
maintains bounded error. We attribute this performance gain
to the proposed method’s ability to render informative novel
scenes resulting in good viewpoints and a good number of
quality measurements (Fig. 3). Though HLoc was able to
provide good accuracy, there were many failures that were
excluded from the statistics, and moreover, the classification
of inliers and outliers for real-time estimation is challenging.

B. Computational Complexity

We additionally investigated the average timing of each
function of our system and compared it with HLoc. Note
that we disabled the multi-threading of the proposed NeRF-
VINS and compare on the same system for a fair comparison.
The results reported in Tab. III show the total time of the
proposed system takes 30 ms which is almost half of the
total timing of HLoc with top 5 match results. Though the
performance of HLoc can be improved by retrieving more
images, this will introduce a significant computation burden
for local matching and PnP, making it difficult to run in
real-time (HLoc (top 50) pipelines take 331.9 ms per frame
as shown in Tab. III). This clearly shows that our pipeline
is lightweight and is capable of high-rate rendering of the
NeRF images enabling real-time localization fully leveraging
the NeRF map information.

C. Robustness to Environment Changes

To assess our system in generating favorable viewpoints
enabling robust localization even when the environment is
changed after mapping, we examined a more challenging
scenario: employing Table 1 as the map and running on Table
5-8 each with distinct environments (refer to Fig. 5). Our
system shows robust localization performance which is also
competitive with HLoc (note that HLoc encounters numerous



TABLE II: The ATE of each algorithm on the AR Table dataset (degree/cm). The top two best results are highlighted with
a bold green color.

Algorithms Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Average
M

ap
-b

as
ed

Nerf-VINS (D) 0.51 / 1.8 0.27 / 1.0 0.50 / 1.0 0.35 / 1.5 0.43 / 1.4 0.59 / 1.9 0.46 / 1.6 0.44 / 1.5
Nerf-VINS (J) 0.47 / 2.0 0.29 / 0.8 0.50 / 0.9 0.31 / 1.6 0.43 / 1.3 0.54 / 1.9 0.51 / 1.7 0.44 / 1.5
VF+Loop+Map 0.93 / 4.1 1.27 / 7.1 0.88 / 6.1 1.39 / 5.2 0.72 / 3.2 0.93 / 3.7 1.68 / 5.3 1.11 / 5.0
ROVIOLI+Map 0.54 / 2.1 1.30 / 3.6 0.67 / 2.2 1.15 / 4.3 0.86 / 3.7 2.33 / 17.9 2.42 / 13.6 1.32 / 6.8
HLoc (top5)* 0.41 / 1.0 0.40 / 1.6 0.38 / 1.4 0.31 / 1.3 0.41 / 1.2 0.60 / 1.6 0.51 / 2.0 0.48 / 1.4
HLoc (top50)* 0.41 / 1.0 0.33 / 1.4 0.35 / 1.2 0.30 / 1.2 0.40 / 1.2 0.57 / 1.6 0.51 / 2.0 0.45 / 1.3

V
IN

S

OpenVINS 1.17 / 5.4 0.55 / 2.2 1.02 / 3.4 1.21 / 5.9 0.50 / 3.3 1.04 / 3.7 1.31 / 7.2 0.97 / 4.5
ROVIOLI 2.05 / 7.1 1.11 / 4.1 2.63 / 7.9 1.48 / 11.1 2.50 / 12.1 1.10 / 4.3 3.12 / 15.9 2.00 / 8.9
VF+Loop 1.25 / 6.7 1.18 / 9.2 0.95 / 6.5 1.10 / 5.7 0.88 / 2.8 0.98 / 11.2 1.57 / 10.1 1.13 / 7.5

VF 1.62 / 5.8 1.32 / 3.0 1.47 / 7.6 1.75 / 5.6 1.12 / 3.4 0.98 / 5.3 1.67 / 9.3 1.42 / 5.7
* Large failures (errors larger than 5 degrees or 10 cm) of HLoc (top5) and HLoc (top50) are excluded from statistics:

HLoc (top5) failure rates: Table 2 37%, Table 3 5.5%, Table 4 0.4%, Table 5 0.5%, Table 6 1%, Table 7 0.5%
HLoc (top50) failure rates: Table 2 39%, Table 3 2.4%, Table 4 0.4%

TABLE III: Average timing for proposed NeRF-VINS and
HLoc pipeline in milliseconds. Recorded on a laptop with
A3000 GPU and 11th Gen Intel(R) Core(TM) i7-11800H @
2.30GHz CPU.

Step Nerf-VINS (D) HLoc (top 5) HLoc (top 50)

Tracking 8.5 - -
Rendering / NetVLAD 11.6 12.9 12.9
Superpoint Extraction 5.4 7.6 7.6

Local Matching 1.7 15.2 153.7
Update / PnP 2.5 21.3 157.7

Total 29.8 57.0 331.9

TABLE IV: AR table ATE (degree/cm) and Table 1 is used
as a map for the following sequence. Blanks indicate failures.
The top two best results are indicated with bold green color.

Algorithm Table 5 Table 6 Table 7 Table 8 Average

Nerf-VINS (J) 0.49 / 3.0 0.61 / 4.1 0.54 / 3.3 0.38 / 3.0 0.50 / 3.4
HLoc (top5)* 0.61 / 3.5 0.64 / 3.6 0.61 / 3.1 0.50 / 3.7 0.59 / 3.5

HLoc (top50)* 0.65 / 3.4 0.67 / 3.6 0.62 / 3.0 0.47 / 3.1 0.60 / 3.3
VF+Loop+Map 0.95 / 12.4 0.82 / 3.3 1.60 / 9.3 2.44 / 9.9 1.45 / 8.7
ROVIOLI+Map 2.48 / 11.3 1.89 / 12.9 2.59 / 14.8 - / - 2.32 / 13.0

* HLoc error larger than 5 degrees or 10 cm are removed to be presentable
HLoc(top5) failure rates: Table 5 38.9%, Table 6 36.8%, Table 7 37.1%,
Table 8 30.5%
HLoc(top50) failure rates: Table 5 23.9%, Table 6 29.4%, Table 7 21.8%,
Table 8 10.7%

failures, which are omitted from consideration see Tab. IV).
In contrast, our system consistently delivers advantageous
viewpoints, facilitating large inlier measurements (Fig. 3).

As can be seen from Fig. 7, around 80% percent of images
for our pipeline are localized within a 2.5 cm accuracy
threshold, while HLoc is only around 70% when matching
with the top 50 images. Our system can localize almost all
the images within a 7.5 cm position error, while HLoc using
the top 5 images and top 50 can only localize 80.9% and
89.3% images within a 20 cm error bound, respectively.

D. Discussion and Limitations

We observe that rendering images at adjacent poses gen-
erates more matches between the rendered image and the
camera image compared to queried database images like
those in DBoW. This suggests that the rendered image, being
pose-based, is less influenced by scene ambiguities, partic-
ularly noticeable during environmental changes in Fig. 3.
The results presented in Fig. 4 raise intriguing considerations

Fig. 7: The percentage of images successfully localized under
a certain position error threshold using Table 1 as a map to
evaluate Table 1-8.

and challenges regarding the necessity to expedite training
time while preserving rendering quality in joint optimiza-
tion. Additionally, studying the sensitivity of IMU noise
and its effects on rendering quality and joint optimization
costs warrants further in-depth investigation. While we have
demonstrated that the proposed method exhibits superior
localization performance, similar to other NeRF methods,
our map is also object-centric. To train the map effectively,
requires surrounding images for effective training. One po-
tential solution is to leverage F2-NerF [66] and Block-Nerf
[67], designed for unbounded camera trajectories and large-
scale map training. Recent works such as Kerbl et al. [68]
offer greater rendering speed and open a new avenue for
exploration. We leave these as future work.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a real-time tightly-
coupled NeRF-VINS algorithm. Built on top of the MSCKF,
the proposed NeRF-VINS extends to efficiently and accu-
rately fuses the NeRF synthetic images to overcome the
limited viewpoint challenges commonly encountered by the
keyframe map-based localization methods. In particular, as
NeRF can generate novel views from any viewpoint, we
exploit this advantage to synthesize better views to provide
higher inlier matches that allow for full utilization of the
map information, resulting in performance gain. In the fu-
ture, we will investigate NeRF map-based initialization i.e.,
initializing the transform between the IMU and map frames.
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