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Abstract—In monocular visual-inertial navigation systems, it is
ideal to initialize as quickly and robustly as possible. State-of-the-
art initialization methods typically make linear approximations
using the image features and inertial information in order
to initialize in closed-form, and then refine the states with a
nonlinear optimization. While the standard methods typically
wait for a 2sec data window, a recent work has shown that it
is possible to initialize faster (0.5sec) by adding constraints from
a robust but only up-to-scale monocular depth network in the
nonlinear optimization. To further expedite the initialization, in
this work, we leverage the scale-less depth measurements instead
in the linear initialization step that is performed prior to the
nonlinear one, which only requires a single depth image for
the first frame. We show that the typical estimation of each
feature state independently in the closed-form solution can be
replaced by just estimating the scale and offset parameters of
the learned depth map. Interestingly, our formulation makes it
possible to construct small minimal problems in a RANSAC loop,
whereas the typical linear system’s minimal problem is quite
large and includes every feature state. Experiments show that
our method can improve the overall initialization performance on
popular public datasets (EuRoC MAV and TUM-VI) over state-
of-the-art methods. For the TUM-VI dataset, we show superior
initialization performance with only a 0.3sec window of data,
which is the smallest ever reported, and show that our method
can initialize more often, robustly, and accurately in different
challenging scenarios.

I. INTRODUCTION

Visual-inertial odometry (VIO [1]) facilitates real-time 3D
motion tracking through the utilization of the camera and an
inertial measurement unit (IMU). The small size, low cost, ef-
ficiency, and complementary sensing characteristics have made
VIO emerge as a foundational technology for AR/VR [2, 3, 4],
robotics [5, 6, 7], and autonomous applications [8, 9, 10].

Two typical classes of VIO estimator designs are nonlinear
optimization-based approaches [11, 12, 13, 14] and light-
weight filter-based ones (e.g. an extended Kalman filter (EKF))
[15, 16, 17, 18, 19]. Both of these approaches rely on good
initial conditions (e.g. velocity and gravity) in order to run
successfully, and it is highly desirable to calculate the initial
conditions as quickly as possible in order to decrease the time
the user or end application has to wait to start. The initial
conditions can be recovered by making assumptions about
the motion (e.g. static), but under dynamic scenarios it is
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better to solve a visual-inertial structure from motion (VI-
SfM) problem in order to initialize without making risky as-
sumptions [20, 21]. However, even VI-SfM can fail, especially
under low-excitation scenarios.

To tackle this initialization problem, a recent method [22]
proposed to leverage learned monocular depth to provide
additional constraints to the VI-SfM and help in the low
excitation case, where the monocular priors are applied to each
keyframe in the final bundle adjustment (BA) step. To initialize
the visual-inertial bundle adjustment (VI-BA), this method
utilizes a closed-form solution similar to [23], which compared
to the nonlinear VI-BA is far more unstable due to the larger
number of linear approximations required. In this work, we
instead propose a simple yet effective method to utilize learned
monocular depth priors in the closed-form linear initialization
instead of the VI-BA refinement step, leveraging the single-
image depth learned over millions of diverse examples as
known prior information to reduce the number of parameters
that need to be estimated in the fragile linear system.

The primary contributions of our work include:
• We propose a new formulation for closed-form visual-

inertial linear initialization which leverages scale-less
single-image depth to reduce the number of feature
parameters to just a scale and offset.

• We show that our novel formulation allows for seamless
integration of the minimal linear system into a robust
RANSAC outlier rejection algorithm, which can be used
to reject both bad depth priors as well as outlier feature
tracks that may be present, whereas the typical linear
system is less suitable for RANSAC.

• We validate our method on two public datasets, and
show that our method can improve the final initialization
accuracy under the challenging scenario of 0.5sec of
data with 5 keyframes. We additionally show superior
initialization performance for the new and even more
challenging scenario of a 0.3sec initialization window,
and extensive ablation studies show that our method has
superior performance in the presence of outliers and a
reduced number of available feature tracks.

The paper is organized as follows: Sec. II provides a review
of related works, Sec. III provides background on the typical
visual-inertial initialization problem, the proposed method is
detailed in Sec. IV, and tested extensively in Sec. V against
the state-of-the-art baselines. Finally, we offer some discussion
of the limitations of our method in Sec. VI before concluding
the paper in Sec. VII.
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Fig. 1: Overview of the proposed monocular-depth aided visual-inertial initialization method.

II. RELATED WORKS

Many works have investigated different methods for per-
forming visual-inertial initialization, and can be generally
divided into two different categories: 1) loosely-coupled al-
gorithms, and 2) closed-form solutions. Loosely-coupled al-
gorithms split the problem into first recovering an up-to-
scale camera-only SfM trajectory result and then recovering
the scale given the inertial measurements, while closed-form
solutions directly formulate a linear system involving both
visual and inertial measurements.

A. Loosely-coupled Algorithms
The works by Mur-Artal et al. [24] and Qin et al. [12, 25]

use a loosely-coupled approach. Mur-Artal et al. [24] leverage
ORB-SLAM [14, 26] SfM results and formulate a small
linear system involving the up-to-scale poses and inertial
preintegration to directly recover scale and gravity – which are
then refined along with the accelerometer bias in a secondary
step. A later work by Campos et al. [27] additionally use the
up-to-scale SfM poses, but instead directly optimizes up-to-
scale velocities, gravity direction, biases, and scale. Since an
initial guess of scale is required for non-linear optimization,
they run the initialization multiple times at different initial
scales and select the one which gives the smallest cost.

Qin et al. [12, 25] leverage a simplified SfM pipeline to
obtain the up-to-scale trajectory, and then formulate a linear
system that recovers scale, gravity, and velocity. A more recent
work by Zuñiga-Noël et al. [28] showed that up-to-scale
SfM results could be leveraged in a quadratically-constrained
least-squares problem, similar to closed-form solutions, which
constrains the known magnitude of gravity to improve the
accuracy. Another work by Concha et al. [29] proposed a
method that quickly initializes the 6 degrees of freedom (DoF)
pose without motion parallax by decoupling the problem into
the rotation, translation direction (5DoF) and magnitude of the
translation (1DoF). While promising due to their robustifica-
tion with RANSAC to handle outliers, they do not directly
leverage inertial information in these low parallax scenarios.
A key downside of loosely-coupled algorithms is that they are
reliant on good SfM results, which require significant parallax
and are typically computationally expensive to obtain.

B. Closed-form Solutions
The earliest works on closed-form solutions are by Dong-

Si and Mourikis [20, 30] and Martinelli [21, 31]. In par-
ticular, Dong-Si and Mourikis [20, 30] proposed the use of

a quadratically-constrained least-squares problem which en-
forces the gravity magnitude, and showed improvements over
methods which did not enforce this constraint. They focused
on the recovery of an unknown IMU-to-camera rotation and
translation, and directly recovered the 3DoF feature positions
in the first reference frame – where Martinelli [21] recovered
the depth of each feature for each bearing observation in
every frame. A work by Li and Mourikis [23] tried to address
the lack of robustness by incorporating measurement noise
by using estimated feature depths to simplify the feature
reprojection cost into an approximate convex minimization
problem. A key drawback is requiring knowledge of the
average scene depth.

Another work by Jacques et al. [32] focused on evaluating
sensitivities to accelerometer and gyroscope biases, which was
further extended by Campos et al. [33] to include an observ-
ability and consensus test to remove poor initialization results
near pure rotation and with limited acceleration motions. A
recent work by Evangelidis and Micusik [34] focused on
reducing the computational demands of Martinelli’s [21] linear
system, and showed that the marginalization (projection) of the
depth of each feature bearing and redundant 3DoF feature in
a reference frame was possible and efficient.

C. Learning-aided Initialization
Recently a handful of works have emerged which investigate

the use of learning-based methods to aid traditional SfM and
visual-inertial initialization problems. Liu et al. [35] utilized
a large MiDaS [36] depth estimation model to replace the
traditional 5-point algorithm [37] with a PnP alignment to
the learned depth cloud. Another work by Hruby et al. [38],
employed model learning to select a starting problem solu-
tion which could numerically be continued without requiring
significant samples within a RANSAC formulation. Both of
these methods, while outside of the visual-inertial field, utilize
learning in the linear initialization stage – similar in spirit to
our approach. Linear initialization, whether in visual or visual-
inertial systems, has always been a highly-unstable processes,
and can gain large benefits from learned prior information.

The work closest to ours is that by Zhou et al. [22].
This work was the first to leverage learned scale-less depth
priors to better constrain the VI-BA – which is performed
after solving a closed-form solution by Li and Mourikis
[23]. This work showed that the inclusion of scale-less depth
constraints in their VI-BA improved the problem conditioning,
robustness, and accuracy under low-excitation scenarios. As



compared to this work, we look to leverage the scale-less depth
directly within the linear initialization stage. As compared to
recovering each feature, our linear system is simplified to only
recovering the scale and offset of the depth map prediction.
This additionally enables the application of RANSAC to
further robustify the problem to outliers.

III. MONOCULAR VISUAL-INERTIAL LINEAR
INITIALIZATION

We consider a sensor platform consisting of a monocular
camera and an inertial measurement unit (IMU). During
the initialization time period N images at [t0, · · · , tN ] are
recorded along with IMU readings. The minimal state we wish
to recover is [20, 30]:

x =
[
I0p⊤

f1
. . . I0p⊤

fM
I0v⊤

I0
I0g⊤]⊤ (1)

where {I0} denote the first IMU frame, I0pfi is the 3DoF
feature position with respect to {I0}, and I0vI0 , I0g are the
velocity of the platform and local gravity expressed in the {I0}
frame, respectively.

A. Inertial Measurement Model

A canonical three-axis IMU provides linear acceleration,
Iam, and angular velocity, Iωm, measurements expressed in
the local IMU frame {I}:

am(t) = a(t) + I
GR(t)Gg + ba(t) + na(t) (2)

ωm(t) = ω(t) + bg(t) + ng(t) (3)

where Gg ≃ [0, 0, 9.81]⊤ is the gravitational acceleration
expressed in the global frame {G}, and ng , na are zero-
mean white Gaussian noises. I

GR denotes the rotation matrix
that transforms a position expressed in the global frame to
one in the local frame. We assume that the biases ba and
bg are known with reasonable accuracy. The continuous time
IMU kinematics which evolve the state from time tk to tk+1

are [39, 40]:
Ik+1

G R =
Ik+1

Ik
∆R Ik

G R (4)

GpIk+1
= GpIk + GvIk∆T − 1

2
Gg∆T 2 + Ik

G R⊤IkαIk+1
(5)

GvIk+1
= GvIk − Gg∆T + Ik

G R⊤IkβIk+1
(6)

where Ikαk+1 and Ikβk+1 are the preintegration terms [41,
42, 43]:

IkαIk+1
=

∫ tk+1

tk

∫ s

tk

k
u∆R (am(u)− ba(u)− na(u)) duds

IkβIk+1
=

∫ tk+1

tk

k
u∆R (am(u)− ba(u)− na(u)) du

We can transform an integration from t0 to tk in the global
into the first IMU frame {I0}:

Ik
I0
R ≜ Ik

I0
∆R (7)

I0pIk ≜ I0vI0∆Tk − 1

2
I0g∆T 2

k + I0αIk (8)
I0vIk ≜ I0vI0 − I0g∆Tk + I0βIk (9)

where ∆Tk = (tk − t0) is the time span for integration.
These can be found by rotating the orientation and velocity

with I0
GR and computing the relative position change I0pIk =

I0
GR(GpIk − GpI0), and defines the relative IMU integration
in the fixed {I0} frame [44].

B. Feature Bearing Observations

Assuming a calibrated perspective camera, the bearing mea-
surement of the i’th feature at timestep tk can be related to
the state by the following:

zi,k := Λ(Ckpfi) + nk (10)
Ckpfi =

C
I R

Ik
I0
R(I0pfi − I0pIk) +

CpI (11)

where Λ([x y z]⊤) = [x/z y/z]⊤ is the camera perspec-
tive projection model, zi,k = [ui,k, vi,k]

⊤ is the normal-
ized feature bearing measurement with white Gaussian noise
nk ∼ N (0,Rk), and {CI R,CpI} are the known camera-IMU
transformation. Eq. (10) can be re-written as the following
linear constraint [20]:[

1 0 −ui,k

0 1 −vi,k

]
Ckpfi ≜ Γi,k

Ckpfi =

[
0
0

]
(12)

We can then substitute Eq. (8) and (11) to give:

Ai,k x = bi,k (13)

Ai,k = Υi,k

[
· · · I3 · · · −∆Tk ∆T2

k

]
(14)

bi,k = Υi,k
I0αIk − Γi,k

CpI (15)

where ∆Tk = ∆TkI3 and Υi,k = Γi,k
C
I R

Ik
I0
R. This can

be “stacked” to recover a complete Ax = b, and given M
features from N images, A ∈ R2MN×(3M+6) and b ∈ R2MN .

C. Constrained Linear Least-Squares

We follow the method by Dong-Si and Mourikis [20, 30,
44], and formulate a constrained linear least-squares problem
given the stacked observations (see Eq. (13)):

min ∥Ax− b∥2 = ∥
[
A1 A2

] [x1
I0g

]
− b∥2 (16)

subject to ∥I0g∥2 = g (17)

The optimal solution can be derived using Lagrange multi-
pliers [30]. The gravity constraint has been shown to have a
noticeable impact on shorter trajectory lengths [32].

IV. SINGLE-IMAGE DEPTH AIDED INITIALIZATION

We now consider we are given a single affine-invariant
(up-to scale and offset) depth map, D, in the first frame of
reference at time t0. As compared to recovering the full feature
states in Eq. (1), we instead formulate all features as a function
of this depth map and the feature bearing in the first camera
frame {C0}. The minimal state we wish to recover is:

x′ =
[
a b I0v⊤

I0
I0g⊤]⊤ (18)

where we have assumed that the affine-invariant depth map
D is sufficiently accurate and can provide an estimate of the
3D structure in front of the camera up to a scale a and offset
parameter b from just a single frame [36]. An overview of the
proposed method can be seen in Fig. 1.



Fig. 2: Frame of references used in the problem. Two features
observed from both the {Ck} and {C0} frame are shown. The
transformation from the {Ik} and {I0} is found through IMU
integration. The bearing C0θfi is used along with the scale-
less depth to recover the scale a and shift b.

Fig. 3: A comparison of the structure of the Dong-Si [20]
A⊤A (left) and the proposed A′⊤A′ (right). The Dong-Si
system contains 35 features here (making it 111×111). While
sparse, it is much larger than ours, which is 8 × 8 no matter
how many features are included. The log condition number
for Dong-Si’s is 9.35 while the proposed is 8.15.

A. Depth-Aided Feature Bearing Model

We now modify the feature model in Sec. III-B to be a
function of the scale-less depth map. We assume that for a
single image the scale a and shift b are constant for the whole
depth map. Specifically, for feature I0pfi we can express the
metric depth scalar zi = Z(ui,0, vi,0) as a function of a, b,
and di = D(ui,0, vi,0):

I0pfi =
I
CR

C0pfi +
IpC

= zi
I0θC0→fi +

IpC

= (adi + b) I0θC0→fi +
IpC (19)

where I0θC0→fi = I
CR[ui,0 vi,0 1]⊤ is the bearing vector of

the feature rotated (but not translated) into the IMU frame,
see Fig. 2 for example frame of references. This treats the
normalized 2D coordinates of the feature in the first camera
frame ui,0 and vi,0 as a known quantity. Substituting Eq. (19)
into Eq. (11) we can recover the following linear system:

A′
i,k x′ = b′

i,k (20)

A′
i,k = Υi,k

[
Bi −∆Tk

1
2∆T2

k

]
(21)

b′
i,k = Υi,k

I0αIk −Υi,k
IpC − Γi,k

CpI (22)

Bi =
[
di

I0θC0→fi
I0θC0→fi

]
. (23)

Given M features from N images, A′ ∈ R2MN×(2+6) and
b′ ∈ R2MN . One can see that the state size remains constant,
no matter how many features are included in the problem. The
structure of our system can be seen in Fig. 3

Remarks: As evident, this formulation of the linear ini-
tialization problem significantly relaxes the original one –
reducing the need to estimate the 3D position of every feature
to just estimating the scale and offset of the depth map
predicted at t0 – which is shared between all features. Given a
reasonable predicted affine-invariant depth D and a and b are
well-constrained, if the recovered scale parameter a is positive,
all of the features will be in front of the camera as desired,
and there will be no spurious feature positions (e.g. too close
or too far due to high uncertainty).

It should be noted that the monocular depth network Mi-
DaS [36] leveraged in this work actually produces affine-
invariant inverse depth maps Dinv, where D(ui, vi) =
1/Dinv(ui, vi) (dropping the subscript for clarity), and
the metric inverse depth is expressed as Zinv(ui, vi) =
ainvDinv(ui, vi)+binv. The use of affine-invariant depth instead
of inverse depth is also reported in [35], which utilizes the
same class of depth networks as us. Due to the division, one
may suspect that the scale and offset for depth, a and b, would
be a nonlinear function of ainv and binv, but in fact, it can be
expressed linearly with the following relationship:

(a D (ui, vi)) + b) (ainv Dinv(ui, vi) + binv) = 1. (24)

Thus, estimating the scale and offset a and b in Eq. (18) instead
of ainv and binv is valid, and ainv, binv can be recovered from a
solution of a, b via stacking and solving[

(a+ bDinv(ui, vi)) (aD(ui, vi) + b)
] [ainv

binv

]
= 1 (25)

for all ui, vi, which is simply Eq. (24) rearranged. Similarly,
Eq. (24) can be rearranged to recover a and b from estimates
of ainv and binv by just grouping different terms.

The fact that a, b and ainv, binv can be related linearly also
means that we can scale Dinv arbitrarily before using it in the
linear system. To this end, for ensured numeric stability of D,
we scale Dinv, which can have arbitrary value, into the range
[1, 2] before computing D via:

Dinv(ui, vi) =
D0

inv(ui, vi)− min(D0
inv)

max(D0
inv)− min(D0

inv)
+ 1 (26)

where D0
inv is the raw affine-invariant inverse depth map from

the monocular depth network. Note that the range [1, 2] is
chosen arbitrarily to avoid possible division by zero.

B. Outlier Rejection in Linear Initialization

A key advantage of our proposed linear system formulation
is its ability to be easily inserted into small minimal problems
in a RANSAC loop to robustify it to outliers. In theory
each measurement in the minimal problem for Eq. (18) can
be chosen from a different feature since each feature track
constrains the same a and b states. However, in practice, we
group the measurements by feature and view in order to 1)
reject bad feature tracks, and 2) reject bad depth network
predictions. An overview of our RANSAC approach can be
seen in Algo. 1. A minimal set of features and poses are
first randomly grouped and the constrained linear system, Eq.
(16), is solved to recover the scale, shift, velocity, and gravity.



Algorithm 1 Linear Initialization with RANSAC
Require: Blocks A′

ki, b′
ki of the complete linear system for i ∈

{1, . . . ,M}, k ∈ {1, . . . , N}, minimal problem size Mmin, Nmin,
maximum number of iterations K, thresholds dmin, γ

Ensure: Robustified solution to linear system x′
best

1: ebest ←∞
2: for i ∈ {1, . . . ,K} do
3: S ← Rand. sample Nmin meas. from Mmin feats.
4: A′

s, b′
s ← Stack blocks i, k ∈ S

5: a, b, I0vI0 ,
I0g← solve(A′

s, b′
s)

6: for i, k not in S do
7: r← A′

ik

[
a b I0v⊤

I0
I0g⊤]⊤ − b′

ik

8: if ||r|| < γ then
9: S ← S ∪ (i, k)

10: end if
11: end for
12: if |S| ≥ dmin then
13: A′

inl, b′
inl ← Stack blocks i, k ∈ S

14: a, b, I0vI0 ,
I0g← solve(A′

inl, b′
inl)

15: r← A′
inl

[
a b I0v⊤

I0
I0g⊤]⊤ − b′

inl
16: if ||r|| < ebest then
17: ebest ← ||r||
18: x′

best ←
[
a b I0v⊤

I0
I0g⊤]⊤

19: end if
20: end if
21: end for

These states are then used to compute the reprojection error
for each measurement not used in the problem, and construct
the inlier measurement set S. The solution from the inlier set
which gives the minimal error is selected as the best state
estimate. We emphasize that the RANSAC approach becomes
feasible due to our relaxation of the original linear system
from the inclusion of the affine-invariant depth map. While
the hard minimal problem for our RANSAC algorithm is 3
views and 2 features, we use 3 views and 4 features in the
minimal problems in all experiments for slightly improved
conditioning.

C. Nonlinear Refinement

We recover the the 3D position of all features (inlier or
not) via Eq. (19), and recover gravity aligned orientation
by transforming the recovered gravity I0g into a gravity
aligned frame Gg = [0, 0, 9.81]⊤. The VI-BA problem which
refines the state estimates, takes into account measurement
uncertainties, and recovers the covariance of the initial states
can now be formulated. The state vector of this optimization
process can be defined as:

xmle =
[
x⊤
I0

. . . x⊤
IN

Gp⊤
f1

. . . Gp⊤
fM

]⊤
(27)

xIk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g,k b⊤

a,k

]⊤
(28)

Note that we do not include the depth prior in the nonlinear
optimization as in [22], because it would require estimating the
depth for all keyframe images (which could be computational
and energy intensive even if possible in real time), rather
than the single first one (which is all that is required in our
solution). We empirically found that only including the depth
prior in the first keyframe in the VI-BA optimization leads
to the exact same result as optimizing without it, but perhaps
could improve it if we had a scale prior as in [22]. Thus, we

omit the depth prior from the VI-BA and only use it in linear
initialization, although including depth priors for all keyframes
in the optimization helps as shown in [22].

We solve the optimization problem with inertial CI , camera
CC , and prior CP cost terms:

argmin
xmle

CI + CC + CP (29)

With the following inertial cost function [41, 42, 43]:

CI ≜
∑
k

||xIk+1
⊟ f(xIk ,amk

,ωmk
)||2Qk

(30)

where Qk is the linearized measurement noise covariance. The
camera re-projection cost is defined as [19]:

CC ≜
∑
i,k

∥zi,k − h(xmle)∥2Ri
(31)

where h(·) includes the camera’s intrinsic distortion, projec-
tion, and camera-to-IMU extrinsic transformation, and Ri is
the image pixel noise covariance.

In addition to constraining the unobservable initial global
position and yaw rotation [45, 46], we found that the gyro-
scope and especially accelerometer biases can nearly be unob-
servable and hard to initialize, and thus, we provide reasonable
priors to these states to avoid numerical instabilities. The prior
cost is defined as:

CP ≜ ∥xmle ⊟ x̆mle∥2Ω−1
P

(32)

where x̆mle is the fixed state linearization point and ΩP is the
prior information matrix – where large values are picked for
unobservable state variables.

V. EXPERIMENTAL VALIDATION

To validate the proposed singe-image depth-aided monoc-
ular VIO initialization, we employ the two most popular
public VI datasets: EuRoC MAV [47] and TUM-VI [48]. We
choose an evaluation method similar to that of [22], where we
divide each sequence into 10sec windows, run initialization
for each of the entry points, and average the results from each
successful run (typically 10-15 initializations per trajectory).

In our experiments, we mainly consider the absolute tra-
jectory error (ATE) [49] metric for position and orientation.
We additionally use all recovered poses to perform a SIM(3)
alignment to the ground truth in order to report the scale
error of the problem. For the ATE, trajectories are aligned

TABLE I: Linear system results on EuRoC

Algorithm ATE (deg) ATE (m) #feats

DS 3D 4.011 0.187 54.9
DS 1D 4.159 0.193 54.8

Ours w/o RANSAC 4.238 0.199 60.2
Ours 4.119 0.197 60.0

TABLE II: Scale error (%) on EuRoC after VI-BA (5 KFs,
0.5sec window)

Algorithm V101 V102 V103 V201 V202 V203 Avg.

DS 3D 11.9 12.1 9.2 8.1 285.1 19.4 57.6
DS + DP 14.1 11.6 7.8 6.4 294.2 19.0 58.8

Ours w/o RANSAC 9.9 1.8 12.8 1.3 72.1 5.6 17.3
Ours 9.3 5.9 10.9 1.9 4.1 2.8 5.8



TABLE III: ATE (deg/m) on EuRoC after VI-BA (5 KFs, 0.5sec window).

Algorithm V101 V102 V103 V201 V202 V203 Average

DS 3D 1.338 / 0.014 0.659 / 0.020 2.173 / 0.025 0.899 / 0.013 1.999 / 0.053 2.483 / 0.043 1.592 / 0.028
DS + DP 1.218 / 0.019 0.706 / 0.022 2.255 / 0.025 0.891 / 0.013 1.600 / 0.039 2.466 / 0.042 1.523 / 0.027

Zhou [22] * - / 0.021 - / 0.038 - / 0.025 - / 0.015 - / 0.015 - / 0.033 - / 0.024
Ours w/o RANSAC 1.138 / 0.017 0.733 / 0.021 2.074 / 0.025 0.886 / 0.011 1.844 / 0.034 2.128 / 0.046 1.467 / 0.026

Ours 1.111 / 0.019 1.065 / 0.018 2.234 / 0.030 0.882 / 0.011 1.442 / 0.015 1.778 / 0.040 1.419 / 0.022

*Results quoted from Table 1 in [22].

to the ground truth using the first frame by solving for the
optimal position and yaw transform between the estimate and
ground truth (see [49]). Since we do not use a scale-aware
alignment such as SIM(3) to compute the ATE, scale accuracy
will directly impact the position, and gravity errors will also
affect the orientation ATE.

A. Implementation Details

Our initialization is implemented on top of the open-source
OpenVINS [19] ov_init package [44], which re-implements
the baseline initialization method by Dong-Si and Mourikis
[20, 30] (see Sec. III). Unless otherwise noted, 75 features on
average are used during initialization. For the monocular depth
network, we leverage an off-the-shelf pre-trained MiDaS net-
work [36] (the v2.1 small model). This particular model is one
of the most efficient available from the MiDaS model zoo, and
is suitable to run on mobile devices. During all experiments,
the network is run directly on the CPU, and network inference
typically takes around 0.2sec. A separate thread is launched
for initialization from the main tracking thread, but no extra
thread is used to run the depth network asynchronously. While
this could be done to improve initialization latency, we choose
to simply run the network on-demand since it is only required
to run once per initialization window (the first frame).

B. Baseline Methods

For evaluation, we mainly consider two methods: 1) DS 3D,
which implements the work of Dong-Si and Mourikis [20]
and is the current default initialization available in OpenVINS
[19], and 2) DS + DP, which is our re-implementation of [22]
using the OpenVINS implementation of Dong-Si [20] and the
MiDaS v2.1 small network [36]. Note that since we utilize
MiDaS, which is completely scale-less, as opposed to the
custom depth network in [22] which is weakly-supervised with
metric scale, we are unable to include the 1, 0 prior on the scale
and shift in the VI-BA. Including this prior could potentially
improve the results, but it is unfortunately not applicable to
MiDaS. Other than this difference, we strictly followed the
formulation presented in [22] for this re-implementation.

C. EuRoC MAV Dataset

We first evaluate on the EuRoC MAV dataset [47] to provide
a relative comparison to the state-of-the-art work by Zhou et al.
[22] (denoted as Zhou [22]). This comparison is only partial
since the implementation in [22] is not open-sourced, thus we
are forced to quote results from the paper where applicable.
We measure the full orientation error and scale error over the

whole trajectory rather than just the gravity and scale error
over well-excited trajectory segments, and thus can not directly
compare to their orientation and scale. We have selected the
closest equivalent challenging configuration of of 5 keyframes
(KFs) evenly spaced over a 0.5sec window.

We first evaluate the impact of the proposed linear system.
We directly report the results of the linear system solutions
(no VI-BA refinement) in Table I. In additional to the ATE,
we also report the average number of features which have
been successfully initialized in front of the camera – where
more features is better in order to better constrain the VI-BA
problem. We also include a 1D version of the linear system,
Eq. (13), termed DS 1D, which estimates scalar feature depths
– considering the first bearing to be true. This 1D linear system
method has slightly worse accuracy than the 3D version, which
is expected since it is not robust to bad initial bearings. We
can see that the proposed method without RANSAC is slightly
worse in terms of ATE than the linear system with 1D feature
states, which is expected since it blindly utilizes all depth
priors in the linear system and also considers the first bearings
to be true. On the other hand, it can successfully initialize more
features in front of the camera than either of the baseline
linear systems, and after performing VI-BA refinement it is
able to have an overall performance improvement (see Table
III). Similarly, the proposed method with RANSAC is slightly
improved in terms of ATE and is able to initialize more
features than the other baselines. Note that the OpenVINS
KLT tracker attempts to reject bad tracks with a Fundamental
matrix RANSAC check, but nevertheless some outliers can
pass the check – especially if they are on the epipolar line.

Looking now to results which perform the VI-BA refine-
ment after closed-form recovery, Tables II and III report the
scale error and ATE, respectively. We can see that the proposed
system without RANSAC enabled (i.e. using all available
measurements outlier or not) hurts the performance, while
leveraging RANSAC has improved scale and ATE accuracy.

D. TUM-VI Dataset

The second dataset we consider is the TUM-VI dataset
[48], where we only evaluate using the left fisheye image.
As shown in Fig. 4, the MiDaS v2.1 small network is still
able to produce reasonable scale-less depth predictions even
without, to the best of our knowledge, explicitly training on
this camera model. The results shown in Table IV confirms that
the proposed method is able to achieve higher accuracy in the
average case for all metrics. One can also see that including



TABLE IV: Initialization window ATE and scale (deg/m (%)) on TUM-VI after VI-BA (5 KFs, 0.5sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.003 / 0.009 (0.54) 0.957 / 0.011 (4.47) 0.940 / 0.020 (1.58) 1.899 / 0.050 (2.86) 0.654 / 0.014 (5.16) 0.612 / 0.007 (2.43) 1.011 / 0.019 (2.84)
DS + DP 1.021 / 0.010 (0.53) 0.943 / 0.011 (2.94) 0.940 / 0.019 (1.76) 1.899 / 0.051 (3.24) 0.659 / 0.015 (5.16) 0.464 / 0.007 (1.86) 0.988 / 0.019 (2.58)

Ours 0.830 / 0.011 (0.46) 0.710 / 0.013 (3.57) 0.720 / 0.009 (0.66) 0.811 / 0.011 (4.37) 1.167 / 0.016 (3.96) 0.432 / 0.009 (1.24) 0.779 / 0.012 (2.37)

TABLE V: Visual-inertial odometry tracking ATE (deg/m) on TUM-VI after VI-BA (5 KFs, 0.5sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 0.688 / 0.036 0.834 / 0.036 1.236 / 0.051 1.501 / 0.079 0.868 / 0.041 0.857 / 0.055 0.997 / 0.050
DS + DP 0.754 / 0.039 0.804 / 0.039 1.105 / 0.047 1.547 / 0.086 0.829 / 0.033 0.748 / 0.058 0.964 / 0.050

Ours 1.330 / 0.187 0.830 / 0.039 1.339 / 0.049 2.114 / 0.294 1.057 / 0.055 1.808 / 0.362 1.413 / 0.164

TABLE VI: Initialization window ATE and scale (deg/m (%)) on TUM-VI with extreme settings (5 KFs, 0.3sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.475 / 0.026 (13.69) 1.002 / 0.011 (1.25) 2.021 / 0.019 (19.18) 0.673 / 0.024 (8.07) 1.545 / 0.017 (4.36) 0.738 / 0.014 (4.36) 1.243 / 0.018 (9.20)
DS + DP 1.523 / 0.026 (13.91) 1.043 / 0.012 (0.31) 2.022 / 0.019 (19.19) 0.680 / 0.024 (8.70) 1.677 / 0.023 (1.00) 0.712 / 0.014 (9.28) 1.276 / 0.020 (8.73)

Ours 1.375 / 0.010 (3.50) 0.851 / 0.007 (1.47) 1.707 / 0.014 (6.95) 1.430 / 0.013 (11.80) 1.572 / 0.010 (6.45) 0.710 / 0.013 (8.68) 1.274 / 0.011 (6.47)

TABLE VII: Visual-inertial odometry tracking ATE (deg/m) on TUM-VI with extreme settings (5 KFs, 0.3sec window)

Algorithm room1 room2 room3 room4 room5 room6 Average

DS 3D 1.255 / 0.210 0.859 / 0.043 1.453 / 0.059 2.318 / 0.368 1.457 / 0.045 0.948 / 0.073 1.381 / 0.133
DS + DP 1.246 / 0.205 0.857 / 0.046 1.547 / 0.060 2.245 / 0.295 1.429 / 0.050 0.978 / 0.076 1.384 / 0.122

Ours 0.882 / 0.036 0.825 / 0.044 1.627 / 0.072 1.637 / 0.085 1.533 / 0.064 0.782 / 0.050 1.214 / 0.059

Fig. 4: Qualitative result of the MiDaS [36] v2.1 small on the
raw fisheye images of TUM-VI. We found that the network
produces reasonable depth maps despite not being explicitly
trained for this camera model; however, training the network
with fisheye data could potentially improve performance.

the depth priors in the VI-BA, as in [22], improves over the
baseline Dong-Si [20] method as expected, but is slightly less-
accurate than ours.

In Table V we report the VIO tracking accuracy using
the initialization results. While the proposed method yields
worse VIO accuracy in this case, this is the only case in
all the experiments where we found the proposed method to
perform worse – making it overall superior. All methods were
successfully initialized for 100% (80/80) of the 10sec windows
generated for this experiment.

1) Timing Analysis: Here we investigate the computational
cost for the different initialization algorithms on the TUM-
VI Room 2 dataset (see Table IX). In particular, we report
the network inference time, building and solving the linear
system, building and solving the optimization problem, and
recovering the covariance. As expected, the proposed method
is able to solve the linear system more efficiently due to the
simplified linear model and the reduction of state size, but it

should be noted that we do not take into account any sparsity
when solving the linear system for any method. The depth
network inference time is reasonably efficient given it only
needs to be performed once for a 0.3 - 0.5 second window
and could be done asynchronously. The cost of building and
solving the MLE problem is similar across methods, while the
covariance recovery takes most of the time – which could be
sped up with more engineering effort.

2) Extreme Low-Parallax Scenario: To further showcase
the benefit of our method, we investigate a new and even
more challenging scenario: initialization with 5 keyframes over
a 0.3sec window. To the best of our knowledge, this is the
shortest initialization window ever reported for monocular
VIO with unknown initial conditions.

Table VI reports the ATE and scale error, while Table VII
reports the VIO tracking error. The proposed method has
overall superior position and scale accuracy in the initialization
window, but slightly worse orientation. The VIO tracking
accuracy for this extremely challenging scenario shows that
the proposed method gains significant accuracy. Additionally,
not all methods successfully initialized in every run in this
experiment, with both baseline methods being successfully
78 times, while the proposed initialized 80 times out of
the 80 10sec windows over the datasets. The initialization
is considered successful if all steps are completed and the
covariance can be recovered from the final VI-BA result.

3) Robustness to Outliers: We additionally investigate how
robust the proposed RANSAC method is to outliers. Given a
set of features selected for initialization, a percent of them are
selected to be outliers. All observations for these features are
perturbed with a normally distributed 10px feature distribution.
The mixture of inlier and outlier features are then fed into



TABLE VIII: Outlier ablation study of ATE (deg/m) on TUM-VI dataset with extreme settings (5KFs and 0.3sec window).

Outliers Algorithm room1 room2 room3 room4 room5 room6 Average

5%
DS 3D 1.594 / 0.017 0.864 / 0.011 1.441 / 0.014 0.990 / 0.025 1.847 / 0.021 0.805 / 0.015 1.257 / 0.017

Ours w/o RANSAC 1.103 / 0.012 0.844 / 0.013 1.707 / 0.023 1.573 / 0.017 1.474 / 0.011 0.754 / 0.009 1.242 / 0.014
Ours 1.091 / 0.021 1.102 / 0.015 1.219 / 0.015 0.933 / 0.014 1.279 / 0.011 0.661 / 0.009 1.047 / 0.014

10%
DS 3D 1.004 / 0.009 0.958 / 0.017 1.586 / 0.014 1.445 / 0.026 1.845 / 0.014 0.840 / 0.016 1.280 / 0.016

Ours w/o RANSAC 2.148 / 0.014 1.429 / 0.016 0.968 / 0.009 1.978 / 0.017 1.578 / 0.010 0.741 / 0.008 1.474 / 0.012
Ours 0.983 / 0.010 0.943 / 0.011 0.661 / 0.007 0.935 / 0.016 1.488 / 0.013 0.732 / 0.012 0.957 / 0.011

25%
DS 3D 3.683 / 0.027 1.182 / 0.016 2.012 / 0.029 1.819 / 0.017 2.343 / 0.015 0.931 / 0.024 1.995 / 0.021

Ours w/o RANSAC 3.124 / 0.021 1.506 / 0.017 1.762 / 0.010 2.737 / 0.044 2.814 / 0.022 2.535 / 0.033 2.413 / 0.025
Ours 2.097 / 0.015 1.111 / 0.009 1.455 / 0.011 1.364 / 0.022 1.503 / 0.014 0.924 / 0.013 1.409 / 0.014

45%
DS 3D 6.454 / 0.047 2.280 / 0.046 1.768 / 0.030 2.481 / 0.034 2.700 / 0.016 1.891 / 0.037 2.929 / 0.035

Ours w/o RANSAC 5.451 / 0.037 2.091 / 0.029 2.049 / 0.023 5.620 / 0.041 5.644 / 0.046 3.355 / 0.056 4.035 / 0.039
Ours 4.160 / 0.033 1.842 / 0.030 2.064 / 0.013 2.714 / 0.032 2.177 / 0.023 3.023 / 0.051 2.663 / 0.030

TABLE IX: Timing analysis of key algorithm components of
the baseline and proposed method on all successful initializa-
tion in the TUM-VI Room 2 dataset. All values are in seconds.

DS 3D Ours w/o RANSAC Ours

Depth Pred. [36] - 0.2112 ± 0.0091 0.2166 ± 0.0070
Lin. Sys. Build 0.0027 ± 0.0001 0.0026 ± 0.0006 0.0027 ± 0.0003
Lin. Sys. Solve 0.0210 ± 0.0094 0.0009 ± 0.0003 0.0024 ± 0.0008

MLE Build 0.0004 ± 0.0000 0.0005 ± 0.0001 0.0005 ± 0.0001
MLE Solve 0.0155 ± 0.0078 0.0165 ± 0.0068 0.0127 ± 0.0035

TABLE X: Percent of successful initializations on TUM-VI
(averaged over all rooms) with 5KFs and 0.3sec window.

Algorithm 60 feats 45 feats 30 feats 15 feats

DS 3D 81.25 17.50 33.75 2.50
DS 1D 100.00 81.25 82.50 26.25

DS 3D + DP 78.75 16.25 32.50 2.50
DS 1D + DP 100.00 80.00 82.50 25.00

Ours w/o RANSAC 100.00 98.75 97.50 55.00
Ours 100.00 95.00 96.25 47.50

the rest of the initialization process. Shown in Table VIII, as
the outlier percentage increases both the baseline system and
non-RANSAC system have increasing errors. The proposed
RANSAC method is able to robustly provide reliable initial
guesses even in the case of 40% outlier features. We stress that
this RANSAC formulation is only enabled by leveraging the
scale-less depth map to ensure the state remains independent
to the number of features.

4) Robustness to Small Number of Feature Tracks: To
showcase the capability of our method to initialize with less
information, we experiment with reducing the number of
features being tracked during initialization. All experiments
up until now have used 75 features, while here we experiment
with 60, 45, 30, and 15 features – simulating a reduced
number of available measurements due to low texture or other
tracking failures. Table X reports the results, and shows that
the proposed method can tolerate a severe reduction in the
number of features available, while the proposed RANSAC
method can still outperform the baselines while remaining also
robust to outliers as shown in the previous experiment.

VI. DISCUSSION AND LIMITATIONS

While we have shown that the proposed method has state-
of-the-art initialization performance on short time windows

(0.5sec and 0.3sec), we admit that its performance diminishes
as the initialization time window increases and more paral-
lax/excitation is available. We believe that this is due to the fact
that our method relies on the learned monocular depth to aid in
the low excitation cases, but as a consequence, can not benefit
from the classical triangulation that works very well when all
the states are observable with sufficient baselines. If extremely
fast monocular initialization is desired, then the proposed
method reigns supreme, while if a longer initialization window
is acceptable or stereo feature tracks are available, we would
recommend to simply use a traditional method. We make
no claim that the proposed method is able to initialize with
zero excitation, since some motion and orientation change is
required to recover scale. We also do not claim to improve
any observability properties of the initialization problem –
only that we can reduce the number of states required to be
estimated which is shown to improve the robustness.

VII. CONCLUSION

In this work, we have introduced a new state-of-the-art
method to initialize monocular VIO extremely quickly and
robustly with the help of a learned single-image depth net-
work. As opposed to utilizing the learned depth in the VI-
BA refinement step, we instead proposed to leverage it as
known prior information in the fragile linear initialization
stage – greatly reducing the number of parameters that need
to be estimated. Not only does our method only require the
depth to be predicted in one frame instead of all of them,
it also conveniently allows for the entire linear initialization
to be placed as a small minimal problem in a RANSAC
loop – which robustifies the linear system that is already
highly unstable outside of ideal conditions. Our results show
that we are able to initialize more features in front of the
camera than the traditional linear system given the same
number of feature tracks, and we display superior initialization
accuracy and robustness on two public benchmark datasets
(EuRoC and TUM-VI). Additionally, on TUM-VI our method
shows an overall superior performance when initializing with
only a 0.3sec window of data – which is the shortest ever
reported. While our method utilizes monocular depth to aid in
initialization, it does not explicitly use it after initialization to
benefit the odometry performance as in [50, 51, 52] – which
would be an important point to improve upon in the future.
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