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Abstract— The system observability analysis is of practical
importance, for example, due to its ability to identify the unob-
servable directions of the estimated state which can influence
estimation accuracy and help develop consistent and robust es-
timators. Recent studies focused on analyzing the observability
of the state of various multisensor systems with a particular
interest in unobservable directions induced by degenerate mo-
tions. However, those studies mostly stay in the specific sensor
domain without aiding to extend the understanding to other
heterogeneous systems. To this end, in this work, we provide
degenerate motion analysis on general local and global sensor-
paired systems, offering insights applicable to a wide range of
existing navigation systems. Our analysis includes 9 degenerate
motion identification including 5 already identified in literature
and 4 new motions with both synchronous and asynchronous
sensor-pair cases. Comprehensive numerical studies are con-
ducted to verify those identified motions, show the effect of
degenerate motion on state estimation, and demonstrate the
generalizability of our analysis on various multisensor systems.

I. INTRODUCTION

Consistent and accurate state estimation is a fundamental
capability for autonomous robotics, enabling effective plan-
ning, control, and perception tasks. This is often addressed
by multisensor fusion approaches leveraging complementary
information from heterogeneous sensors [1], [2]. Success-
fully integrating multiple sensing modalities requires the
accurate understanding of spatiotemporal relations between
them, so-called spatiotemporal extrinsics. Consequently, cal-
ibrating these extrinsics becomes a critical yet challenging
task for achieving high-quality state estimation. Many exist-
ing methods assume perfect offline calibration [3]–[5] and
which, however, inject unmodelled errors into the estimator,
potentially degrading localization performance if the prior
calibration was poor or inevitably changed during long-term
operation. To this end, many existing works [6]–[9] append
the calibration parameters in the state to improve robustness
by modeling their uncertainties and jointly estimating them
while performing navigation (i.e., online sensor calibration).

Generally, these states are assumed to be observ-
able/recoverable with sensor information. However, recent
works show that the observability of the state can vary
depending on the robot’s motion [10], [11] motivating many
researchers to investigate how to identify unobservable di-
rections of the state [12]–[14] or constrain the estimator
[15], [16] to avoid gaining information along unobservable
directions. Efforts have also been made to analytically iden-
tify motion profiles (i.e., degenerate motions) that yield the
state to be partially unobservable. Many of the analyses are
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within visual-inertial navigation system (VINS [17]) territory
and [10] is one of the early works that showed the spatial
extrinsic parameters between IMU and camera are fully
observable under motions with at least two different axes
rotation. Other works, such as [18] identified constant accel-
eration motion and constant velocity motion that make the
VINS state partially unobservable with the gravity magnitude
and scale, respectively (similar analysis are also shown in
[19]). [20] first showed a general condition for the time
offset calibration to be observable and identified degenerate
motion as constant acceleration without rotation and constant
velocity and rotations along the gravity direction (generalized
to rolling shutter camera in [21]). One of the most thorough
analyses of degenerate motion is [11], which analyzed the
VINS state with spatiotemporal calibration parameters and
identified 5 motions: 1-axis rotation with 3D translation, pure
3D translation, constant local angular and linear velocities,
constant local angular velocity and global linear acceleration,
and no motion. This analysis has been extended to the
systems that calibrate IMU intrinsic [22], camera intrinsic
[23], and multi-IMU & multi-camera [24].

A relatively small number of works have explored de-
generate motion analysis with other multisensor systems
(e.g., GPS or LiDAR). [25] performed degenerate motion
analysis with LiDAR-camera-IMU system identifying the
same set of motion profile of [11] that also makes the LiDAR
calibration parameters unobservable, [7] analyzed the wheel-
camera-IMU system, identifying the subset of the degenerate
motions and some additional motion profiles that make the
wheel intrinsic state partially unobservable (similar results
can be found in [26] with different wheel configurations).
Also, there is an analysis of kinematic chained-multi-IMUs
finding unique motion that makes their joint center partially
unobservable, and [27] presented degenerate motion analysis
on the inertial system fused with different geometric feature
measurement models (point, line, and plane).

While these findings greatly help in understanding those
systems and further aid in designing consistent estimators
[28]–[30], the findings stay in the specific analyzed sensor
domain, and the extension of those analyses to the other sys-
tems remains unclear. To this end, we aim to generalize those
analyses to a local and global sensor-paired system where the
local sensor (e.g., IMU or wheel encoder) provides 6 DOF
ego-motion information while the global pose information
can be measured (e.g., GPS) or inferred (i.e., Camera or
LiDAR)1 from the global sensor, that can be generalized to
most multisensor systems.

The main contributions of this work include:
• We generalize the existing degenerate motion analysis

1While these sensors are typically not considered as global sensors, they
can provide global information with map or place recognition.



TABLE I: Summary of degenerate motions. The new findings of the degenerate motion profile are highlighted with bold text.

Degenerate Motions Partially Unobservable States References Lemmas
1 Axis Rotation & 3 Axis Translation

Constant Local Linear & Angular Velocities

3 Axis Translation

2 Axis Translation

1 Axis Translation

Constant Linear Velocity

1 Axis Rotation

Constant Angular Velocity

No Motion

GpI ,
JpI

GpI ,
J
I q̄,

JpI ,
J tI
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JpI

GpI ,
JpI
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J
I q̄,

JpI

I
Gq̄, GpI ,

J
I q̄,

JpI ,
J tI

I
Gq̄, GpI ,

J
I q̄,

JpI

I
Gq̄, GpI ,

J
I q̄,

JpI ,
J tI

I
Gq̄, GpI ,

J
I q̄,

JpI ,
J tI

[7], [11], [25]

[7], [11], [20], [21], [25]

[7], [11], [25]

[7], [11], [25]

[7], [11]

Lemma 1

Lemma 2

Lemma 3

Lemma 3

Lemma 4
Lemma 5
Lemma 6
Lemma 7
Lemma 8

to the state of general local and global sensor-paired
systems with spatiotemporal calibration that can be
applied to broader multisensor systems.

• We perform the analysis for both synchronized and
asynchronous systems, identifying 9 degenerate motions
including 5 already identified and 4 new (see Tab. I).

• The identified degenerate motions are verified from our
numerical study and shown to hurt not only the robot
pose estimation but also calibration performance toward
exact unobservable directions. The numerical study is
extended to various combinations of multisensor sys-
tems, including IMU, camera, GPS and LiDAR, show-
ing the generalizability of our analysis to multisensor
systems.

II. SYNCHRONOUS GLOBAL AND LOCAL
SENSOR-PAIRED SYSTEM

In this section, we present preliminaries of a synchronous
global-local sensor-paired system for the degenerate motion
analysis. Note we use the term synchronous to indicate that
the two sensor measurements have the same timestamps
while the time offset between the sensors still exists that
needs to be calibrated. We define two sensors as: {I} that
provides ego-motion information (e.g., IMU or wheel), and
{J} that receives global pose measurements (e.g., GPS or
motion tracking). We assume noise-free for the analysis.

A. State to Analyze
At time tk, the state vector carries the current pose of

sensor {I} and the spatiotemporal calibration parameters:

xSk
=

[
Ik
G q̄⊤ Gp⊤

Ik
J
I q̄

⊤ Jp⊤
I

J tI
]⊤

(1)

where Ik
G q̄ is the unit quaternion (IkG R in rotation matrix

form) that represents the rotation from the global {G} to the
sensor {I}; GpIk is the sensor {I} position in the global
{G}; {JI q̄, JpI} and J tI are the extrinsic calibration and
time offset between sensor {I} and {J}. Additionally, the
corresponding error state vector is:

x̃Sk
=

[
Ik
G θ̃

⊤ Gp̃⊤
Ik

J
I θ̃

⊤ J p̃⊤
I

J t̃I

]⊤
(2)

Note that throughout the paper, x̂ is used to denote the
estimate of a random variable x with x̃ = x ⊟ x̂ denotes
the error state. For the quaternion error state, we employ
JPL multiplicative error [31] and use θ̃ ∈ R3 defined by the
error quaternion i.e., ˜̄q = q̄⊗ ˆ̄q−1 ≃ [ 12 θ̃

⊤
1]⊤. The ⊞ and ⊟

operations map elements to and from a given manifold and
equate to simple + and - for vector variables [32].

B. State Propagation Model with Local Sensor {I}
At time tk−1, we leverage the local sensor’s relative pose

information, {IkIk−1
q̄, Ik−1pIk}, to propagate the state, Eq. (1),

from tk−1 to tk as:
Ik
G q̄ = Ik

Ik−1
q̄ ⊞ Ik−1

G q̄, GpIk = GpIk−1
+ G

Ik−1
RIk−1pIk (3)

while the calibration states remain the same. The correspond-
ing error state transition can be shown as:

x̃Sk
= ΦS(tk, tk−1)x̃Sk−1

(4)

ΦS(tk, tk−1) =

 Ik
Ik−1

R 03 03×7

−G
Ik−1

R⌊Ik−1pIk⌋ I3 03×7

07×3 07×3 I7

 (5)

where ⌊·⌋ is a skew-symmetric matrix.

C. State Update Model with Global Sensor {J}
The synchronized global sensor, {J}, measures the 6 DOF

pose of the sensor in global at the state time tk as:

zSk
:=

[
Jk

G θ
GpJk

]
=

[
Log(JIR

Ik
G R)

GpIk + G
Ik
RIpJ

]
:= h(xSk

) (6)

where Jk

G θ := Log(Jk

G R) and Log(·) is the SO(3) matrix
logarithmic function [33]. Eq. (6) can be linearized at the
state estimate x̂Sk

and the residual is defined as:
z̃Sk

:= zSk
− h(x̂Sk

) = HSk
x̃Sk

(7)
where HSk

is Jacobian matrix of the measurement function:

HSk
=

[
J
IR 03 I3 03 ΞS1

−G
Ik
R⌊IpJ⌋ I3 −G

Ik
R⌊IpJ⌋IJR −G

Ik
RI

JR ΞS2

]
(8)

ΞS1 = J
IR

IkωIk , ΞS2 = GvIk − G
Ik
R⌊IpJ⌋IkωIk (9)

where v and ω are linear and angular velocities. The detailed
derivation can be found in our tech report [34].

D. Observability Matrix
The observability matrix MS for the linearized system can

be defined as follows [35]:
MS =

[
H⊤

S0
(HS1

ΦS(t1, t0))
⊤ . . . (HSk

ΦS(tk, t0))
⊤]⊤(10)

For any k ≥ 1, the k-th block row, MSk
can be derived as:

MSk
: = HSk

ΦS(tk, t0) (11)

=

[
J
IR

Ik
I0
R 03 I3 03 ΞS1

ΞS3 I3 ΞS4 −G
Ik
RI

JR ΞS2

]
(12)

ΞS3 = −G
Ik
R⌊IpJ⌋IkI0R− G

I0R⌊I0pIk⌋ (13)

ΞS4 = −G
Ik
R⌊IpJ⌋IJR (14)

If we can find matrix N that satisfies MSk
N = 0 ,∀k ≥ 1,

the basis of N indicate the unobservable directions of the
linearized system.



III. ASYNCHRONOUS GLOBAL AND LOCAL
SENSOR-PAIRED SYSTEM

In this section, we present preliminaries of an asyn-
chronous global-local sensor-paired system for the degen-
erate motion analysis. Note we use the term asynchronous
to indicate that the two sensor measurements have different
timestamps. In analogy to the synchronous system, we define
local sensor {I} and global sensor {J} for the analysis.

A. State to Analyze
For the asynchronous system, we analyze the following

state which is similar to the synchronous sensor state:

xAk
=

[
Ik
G q̄⊤ Gp⊤

Ik

Ik−1

G q̄⊤ Gp⊤
Ik−1

J
I q̄

⊤ Jp⊤
I

J tI

]⊤
(15)

Note the state has an additional sensor pose {Ik−1

G q̄,GpIk−1
}

at tk−1 to handle the asynchronicity. The corresponding error
state can now be presented as:

x̃Ak
=

[
Ik
G θ̃

⊤ Gp̃⊤
Ik

Ik−1

G θ̃
⊤ Gp̃⊤

Ik−1

J
I θ̃

⊤ J p̃⊤
I

J t̃I

]⊤
(16)

B. State Propagation Model with Local Sensor {I}
The asynchronous system’s state propagation matrix

ΦA(tk, t0) is very close to that of the synchronous one which
we refer to our report for more details [34].

C. State Update Model with Global Sensor {J}
Assume we have a pose measurement of sensor {J} at

time t′k, where tk−1 ≤ t′k +
J tI ≤ tk. The measurement can

be modeled as follows:

zAk
:=

[
Jk′
G θ

GpJk′

]
=

[
Log(JIR

Ik′
G R)

GpIk + G
Ik′R

IpJ

]
:= h(xAk

) (17)

Due to the measurement asynchronicity, the exact pose
{Ik′
G R,GpIk′} does not exist in the state vector, but can be

approximated with linear interpolation [36]:
G
Ik′R =G

Ik−1
RExp(λ Log(Ik−1

G RG
Ik
R)) (18)

GpIk′ =(1− λ)GpIk−1
+ λGpIk (19)

λ =(t′k + J tI − tk−1)/(tk − tk−1) (20)

where Exp(·) is the SO(3) matrix exponential functions [33].
The measurement model can be linearized at the state esti-
mate x̂Ak

and the residual is defined as:

z̃Ak
:= zAk

− h(x̂Ak
) = HAk

x̃Ak
(21)

where HAk
is the Jacobian matrix of the measurement

function with respect to the involved parameters and can be
derived as:

HAk
=

[
ΞA1 03 ΞA1 03 I3 03 ΞA1

ΞA4 λI3 ΞA5 (1− λ)I3 ΞA6 ΞA7 ΞA8

]
where the detailed derivation can be found in our report [34].

D. Observability Matrix
Analogous to our earlier derivations (Eq. (12)), the k-th

row block of the observability matrix can be defined as:

MAk
: = HAk

ΦA(tk, t0) (22)

where the full derivation and the structure are omitted due
to limited space, but interested readers can refer to our tech
report [34] for more information.

IV. DEGENERATE MOTION ANALYSIS

By analyzing the observability matrix MSk
and MAk

, we
identify the following degenerate motions that cause the cor-
related state parameters to be partially unobservable. Here,
we present both synchronous and asynchronous systems’
unobservable directions under degenerate motions showing
1) both system shares the same degenerate motions and 2)
the state parameters correlated to the unobservable directions
are the same. Brief proofs of degenerate motions for the
synchronous system are provided while just showing the null
space of the asynchronous system for brevity (see [34] for
full verification).

Lemma 1: If the system undergoes 1-axis rotation and
general 3-axis translation motion, the state is partially un-
observable with directions as:

N1 =
[
01×3 k⊤ 01×3 (JIRk)⊤ 0

]⊤
(23)

where k is the rotation axis. The state variables correlated
to the unobservable directions are: GpI ,

JpI .
Proof: The motion constraint can be interpreted as the

following geometric constraints:
I0
GRk = Ik

G Rk = k (24)

We can find N1 is the null space of MSk
with the above

constraints:

MSk
N1 =

[
03×1

k− G
Ik
RI

JR
J
IRk

]
= 06×1 (25)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N1 under the same condition:

N′
1 =

[
01×3 k⊤ 01×3 k⊤ 01×3 (JIRk)⊤ 0

]⊤
(26)

Lemma 2: If the system undergoes constant angular and
linear velocity motion, the state has an additional unobserv-
able direction N2 on top of N1:

N2 =
[
01×6 − (JIR

I0ωI0)
⊤ (JIR

I0vI0)
⊤ 1

]
(27)

The state variables correlated to the unobservable directions
are: GpI ,

J
I q̄,

JpI ,
J tI .

Proof: The motion constraint can be interpreted as the
following geometric constraints:

I0
GRk = Ik

G Rk = k, IkvIk = I0vI0 ,
IkωIk = I0ωI0 (28)

We can find N2 is the null space of MSk
with the above

constraints (only showing the new directions):

MSk
N2 =

[
−J

IR
I0ωI0 +

J
IR

IkωIk

−G
Ik
RI0vI0 +

GvIk

]
= 06×1 (29)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N2 under the same condition:

N′
2 =

[
01×12 − (JIR

I0ωI0)
⊤ (JIR

I0vI0)
⊤ 1

]⊤
(30)

Lemma 3: If the system undergoes pure 3D translation
or 2D translation (planar) motion, the state has partially
unobservable directions that incorporate N1 as:

N3 =
[
03 I3 03 (JIR

I0
GR)⊤ 03×1

]
(31)

The state variables correlated to the unobservable directions
are: GpI ,

JpI .



Proof: The motion constraint can be interpreted as the
following geometric constraints:

I0
GR = Ik

G R, IkωIk = I0ωI0 = 03×1 (32)

We can find N3 is the null space of MSk
with the above

constraints:

MSk
N3 =

[
03

I3 − G
Ik
RI

JR
J
IR

I0
GR

]
= 06×1 (33)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N3 under the same condition:

N′
3 =

[
03 I3 03 I3 03 (JIR

I0
GR)⊤ 03×1

]
(34)

Lemma 4: If the system undergoes general local 1-axis
translation (straight line motion with general velocity) with-
out rotation, the state has an additional unobservable direc-
tion N4 on top of N3 and N1:

N4 =
[
k⊤ 01×3 −(JIRk)⊤ 01×3 0

]⊤
(35)

where k is the axis of the translation. The state
variables correlated to the unobservable directions are:
I
Gq̄,

GpI ,
J
I q̄,

JpI .
Proof: The motion constraint can be interpreted as the

following geometric constraints:
I0
GR = Ik

G R, IkωIk = I0ωI0 = 03×1,
I0pIk = f(tk)k (36)

where f(·) is a scalar function. We can find N4 is the null
space of MSk

with the above constraints (only showing the
new directions):

MSk
N4 =

[
J
IR

Ik
I0
Rk− J

IRk
−G

Ik
R⌊IpJ⌋k− G

I0
R⌊I0pIk⌋k+ G

Ik
R⌊IpJ⌋k

]
=

[
03×1

−G
I0
R⌊f(tk)k⌋k

]
= 06×1 (37)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N4 under the same condition:

N′
4 =

[
k⊤ 01×3 k⊤ 01×3 − (JIRk)⊤ 01×3 0

]⊤
(38)

Lemma 5: If the system undergoes constant local linear
velocity motion (straight line motion with constant veloc-
ity) without rotation, the state has additional unobservable
direction N5 on top of N4, N3, and N1 as:

N5 =
[
01×3 −Gv⊤

I0
01×6 1

]⊤
(39)

where k is the axis of the translation. The state
variables correlated to the unobservable directions are:
I
Gq̄,

GpI ,
J
I q̄,

JpI ,
J tI .

Proof: The motion constraint provides the following
additional geometric constraint on top of Eq. (36):

IkvIk = I0vI0 = sk (40)

where s is the speed of the motion. We can find N5 is the
null space of MSk

with the above constraints (only showing
the new directions):

MSk
N5 =

[
03×1

−GvI0 +
GvIk

]
= 06×1 (41)

This completes the proof.

The asynchronous system has the following unobservable
directions similar to N5 under the same condition:

N′
5 =

[
01×3 −Gv⊤

I0
01×3 −Gv⊤

I0
01×6 1

]⊤
(42)

Lemma 6: If the system undergoes general 1-axis rotation
motion without translation, the state has additional unobserv-
able direction N6 on top of N1 as:

N6 =
[
01×3 k⊤ 01×3 (JIRk)⊤ 0

]⊤
(43)

where k is the rotation axis. The state variables correlated
to the unobservable directions are: I

Gq̄,
GpI ,

J
I q̄,

JpI .
Proof: The motion constraint can be interpreted as the

following geometric constraints:
I0
GRk = Ik

G Rk = k, I0pIk= 03×1,
IkvIk=

I0vI0= 03×1 (44)

We can find N6 is the null space of MSk
with the above

constraints (only showing the new directions):

MSk
N6 =

[
03×1

k− G
Ik
RI

JR
J
IRk

]
= 06×1 (45)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N6 under the same condition:

N′
6 =

[
01×3 k⊤ 01×3 k⊤ 01×3 (JIRk)⊤ 0

]⊤
(46)

Lemma 7: If the system undergoes constant 1-axis angu-
lar velocity motion without translation, the state has addi-
tional unobservable direction N7 on top of N6 and N1 as:

N7 =
[
−I0ω⊤

I0
01×9 1

]⊤
(47)

The state variables correlated to the unobservable directions
are: I

Gq̄,
GpI ,

J
I q̄,

JpI ,
J tI .

Proof: The motion constraint provides the following
additional geometric constraint on top of Eq. (44):

IkωIk = I0ωI0 = sk (48)

where s is the speed of the motion. We can find N7 is the
null space of MSk

with the above constraints (only showing
the new directions):

MSk
N7 =

[
J
IR(−I0ωI0 +

IkωIk)
G
Ik
R⌊IpJ⌋(IkI0R

I0ωI0 − IkωIk)

]
= 06×1 (49)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N7 under the same condition:

N′
7 =

[
−I0ω⊤

I0
01×3 −I0ω⊤

I0
01×9 1

]⊤
(50)

Lemma 8: If the system has no motion, the state has
unobservable directions N8 and N9 on top of N3 as:

N8 =
[
I3 03 −J

IR
⊤ 03×6

]⊤
, N9 =

[
01×12 1

]⊤
The state variables correlated to the unobservable directions
are: I

Gq̄,
GpI ,

J
I q̄,

JpI ,
J tI .

Proof: The motion constraint can be interpreted as the
following geometric constraints:

I0
GR = Ik

G R, IkωIk = I0ωI0 = 03×1 (51)
I0pIk = 03×1,

IkvIk = I0vI0 = 03×1 (52)

We can find N8 and N9 are the null space of MSk
with the

above constraints (only showing the new directions):

MSk
N8 =

[
J
IR

Ik
I0
R− J

IR

−G
Ik
R⌊IpJ⌋IkI0R+ G

Ik
R⌊IpJ⌋

]
= 06×3 (53)



Fig. 1: General Motion Trajectory (left) and State Estimation performance with Online calibration

Fig. 2: Constant Linear Velocity Trajectory (left) and State Estimation performance with Online calibration

Fig. 3: Time offset calibration with general motion (left) and constant linear
velocity motion (right).

MSk
N9 =

[
J
IR

IkωIk
GvIk − G

Ik
R⌊IpJ⌋IkωIk

]
= 06×1 (54)

This completes the proof.
The asynchronous system has the following unobservable

directions similar to N8 and N9 under the same condition:

N′
8 =

[
I3 03 I3 03 −J

IR
⊤ 03×4

]⊤
, N′

9 =
[
01×18 1

]⊤
V. NUMERICAL STUDY

We conducted a detailed numerical analysis to validate
the findings from the prior section. By leveraging Open-
VINS [37] simulator and MINS [38], we simulate realistic
inertial angular velocity and acceleration measurements as
the local motion sensor to perform state propagation. We
also simulate an asynchronous global navigation sensor that
measures the 6 DoF pose of the sensor [See Eq. (6)]. Note we
added noises to the measurements to show how unobservable
parameters are estimated under realistic scenarios. For our
experiments, we designed multiple degenerate trajectories
and offer concrete evidence backing our analytical conclu-
sions and discoveries. Due to the space limit, we only show
a few representative results while more results can be found
in our tech report [34].

A. Degenerate Motion Validation

Figure 1 and Figure 2 show the trajectories of general and
degenerate constant linear velocity motions, and the state
estimation with online calibration performance where the
blue lines are the estimation error, and black lines indicate
the ±3σ bounds. Figure 3 shows the time offset calibration
results of both motions. Table II further report the The
average Root Mean Squared Error (RMSE) for the IMU pose
and the mean of the calibration parameter errors across 20
Monte-Carlo simulations with different motion profiles.

From the figures, it is evident that during general mo-
tion, both the robot state estimation and online calibration
are consistent, as their errors remaining within the ±3σ
bounds [See Figure 1 and Figure 3 (left)]. Conversely, in
scenarios with constant linear velocity—a motion proven
to be degenerate (refer to Lemma 5) - the system exhibits
inconsistency and inaccuracy in both state estimation and
calibration, as depicted in Figure 2 and the right of Figure 3.
Both rapidly diverge and become inconsistent as they exceed
the ±3σ bounds. This can also be seen from Table II. When
comparing general and constant velocity motion results, the
calibration parameters and IMU pose estimates are inaccurate
for the constant velocity case.

One interesting observation is the drift direction of both
the calibration and state estimation is shown to be the same,
for example the sensor and IMU position [See Figure 2,
second and last]. This is conjectured to have unobservable
directions N3 =

[
03 I 03 I 03×1

]⊤
due to simulation

setup (JIR
I0
GR = I3), which matches the direction of the drift



TABLE II: Average RMSE values for the IMU pose and calibration parameters (mean error) based on 20 Monte-Carlo runs. Each parameter is represented
in three columns for the x, y, and z axes. Entries in bold signify pronounced errors and inconsistencies indicative of the degeneration motion effects.

I
Gθ̃ RMSE (deg.) Gp̃I RMSE (m) J

I θ̃ RMSE (deg.) J p̃I RMSE (cm) J t̃I (s)

General Motion 0.481 0.481 0.536 0.014 0.014 0.014 0.0048 0.0011 0.0022 0.146 0.160 0.121 6.07e-05
1 Axis Rot. 3 Axis Trans 0.493 0.547 0.471 0.019 0.047 0.016 0.0020 0.0038 0.0020 0.090 0.094 2.374 -

Const Local Linear and Angular Vel. 0.705 0.634 0.682 0.074 0.057 0.055 0.1237 0.1900 1.9096 1.906 4.944 0.561 3.74e-02
1 Axis Trans. 0.603 0.915 0.654 0.095 0.091 0.101 0.0074 0.0031 0.0196 5.776 5.595 3.028 -

Const. Linear Vel. 0.667 0.752 0.924 0.084 0.078 0.063 0.0013 0.0001 0.1681 4.409 3.811 0.804 3.19e-02
1 Axis Rotation 0.598 0.588 0.677 0.033 0.035 0.041 0.0075 0.0046 0.0796 0.081 0.074 2.960 -

Constant Angular Vel. 0.661 0.537 0.810 0.073 0.073 0.060 0.0027 0.0024 0.0844 4.364 3.803 0.801 3.08e-02
No Motion 0.673 0.710 0.868 0.084 0.083 0.063 0.0017 0.0007 0.1488 4.459 3.737 0.785 2.75e-02

(a) IMU+GPS (b) IMU+CAMERA+GPS+LiDAR
Fig. 4: State estimation and calibration cross 20 Monte-Carlo simulations during a one-axis translational motion for IMU+GPS (left) and
IMU+CAMERA+GPS+LiDAR (right)

(see Table I and Lemma 3). These results indicate that the
drift in state estimates stemmed from the degenerate motion
during calibration.

These results further emphasize the conclusion that since
the calibration parameters and state vectors are related and
jointly observable, any inconsistency arising from online
calibration during degenerate motion directly impacts the
performance of state estimation. This is primarily due to the
tightly coupled online estimation formulation of state and
calibration. This trend is further illustrated in Table II with
other degeneration motions as the IMU pose estimation and
calibration performance notably drop.

B. The Impact of Noise Level on Estimation Drift

We further perform simulations to explore the impact of
degenerate motion under different measurement noise levels.
As shown in Figure 5, we use a high-quality IMU and a
lower-quality IMU under one axis rotation to perform state
estimation with online calibration, The high-quality IMU
yielded both accurate and consistent results. There are two
reasons behind this. First, a low-noise sensor can provide
more information and less randomness. Moreover, enhanced
estimation performance means that the linearized estimator
has fewer linearization errors. These errors are paramount
in causing inconsistencies in the estimator, particularly be-
cause of discrepancies in the observability properties (i.e.,
which causes the wrong information to go into unobserv-
able directions). In essence, it better preserves the system’s
observability properties.

C. Multi-Sensor System with Online Calibration

We also verified the analysis and evaluate the estimation
and calibration performance with different sensors, including
IMU, Lidar, Camera, and GPS, where we use the IMU for
propagation, and the others can provide an inferred pose
measurement as a global sensor. We refer the readers to
our previous work [38] about how to model the sensor

Fig. 5: State estimation and online calibration with constant angular velocity
motion paired a good (grey) or a lower-quality IMU (blue)

.
measurement functions. In our simulation, we pair a Lidar,
GPS, or monocular camera with an IMU to enable robot
navigation with online calibration. The 20 Monte-Carlo run
results are reported in Figure 4. Not surprisingly, all the
sensor pairs are shown to suffer from the inconsistency of
the degenerate motion.

Moreover, when we employed a system integrating multi-
ple sensors (i.e., a combination of a camera, Lidar, GPS, and
IMU, Figure 4b), the results aligned with our expectations.
Degenerate motion continued to adversely affect both cal-
ibration and navigation performance, even in multi-sensor
setups. These findings underscore the applicability of our
analysis to be generalized to multi-sensor navigation systems.

VI. CONCLUSIONS

In this study, we surveyed the degenerate motion analyses
of many systems and further provided comprehensive de-
generate motion analysis on local and global sensor-paired
systems which can be applied to most multi-sensor setups.
Our analysis pinpointed 9 degenerate motions: 5 previously
recognized and 4 new ones. Both mathematical proofs and
Monte Carlo simulations verified these findings. Through
comprehensive numerical studies, we showed the degenerate
motion may not only degrade the calibration performance but
also hurt the robot pose estimation toward the unobservable
direction induced by degenerate motions. We extended our
study to multi-sensor systems, showing various combinations
of sensor suits are affected by the same degenerate motions
verifying the generalizability of our analysis to many multi-
sensor systems.
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