
Fast and Consistent Covariance Recovery
for Sliding-window Optimization-based VINS

Chuchu Chen, Yuxiang Peng, and Guoquan Huang

Abstract— In this paper, we introduce a novel and effi-
cient technique for consistent covariance recovery in nonlinear
optimization-based Visual-Inertial Navigation Systems (VINS).
Estimating uncertainty in real-time is crucial for evaluating
system performance and enhancing downstream operations
such as data association. However accessing the marginal
covariance of the state variables of interest in optimization-
based VINS presents a significant challenge – a computational
bottleneck due to the need to invert the high-dimensional
information (Hessian) matrix. In our recent work [1], the First-
Estimates Jacobian (FEJ) methodology was used to properly
fix state linearization points in the optimization-based VINS,
which seems counter-intuitive but improves the estimation
performance in both consistency and accuracy. Capitalizing on
this unique aspect of the FEJ strategy, in this work we carefully
design the covariance recovery algorithm to improve efficiency
by avoiding redundant computation. Remarkably, our approach
achieves a computational speed that is 4-10 times faster than
the existing methods. Through comprehensive numerical eval-
uations across four state-of-the-art marginalization archetypes,
we not only affirm the consistency of our covariance estimates
but underscore its superior computational efficiency.

I. INTRODUCTION AND RELATED WORK

Visual-Inertial Navigation System (VINS) [2] has sparked
significant research in the last decades and present immense
potential in different domains such as autonomous naviga-
tion [3]–[7], extended reality [8], and space exploration [9].
By integrating a high-frequency inertial measurement unit
(IMU) with a data-rich camera, VINS estimators can effec-
tively estimate the sensing platform’s pose generally using
either efficient filter-based methods, performing linearization
once [10]–[19], or optimization-based methods, which offer
more precision through iteratively linearizing and solving but
require greater computational resources [20]–[24].

Many existing VINS approaches offer an efficient and
accurate mean estimation of the state vector. However,
real-time uncertainty quantification (UQ) is also crucial
for numerous practical applications. This is typically de-
scribed by a marginal covariance matrix, representing the
uncertainties between a subset of relevant state variables.
For example, knowing the covariance can greatly simplify
matching current measurements with their corresponding
past observations in data association problems [25], [26].
Moreover, information-theoretic measures, such as mutual
information derived from covariance, enhance robotics tasks

This work was partially supported by the University of Delaware (UD)
College of Engineering, the Delaware NASA/EPSCoR Seed Grant, the NSF
(MRI-2018905, SCH-2014264), Google ARCore, and Meta Reality Labs.

The authors are with the Department of Mechanical Engi-
neering, University of Delaware, Newark, DE 19716, USA. Email:
{ccchu,yxpeng,ghuang}@udel.edu

Fig. 1: An example of robot position covariance recovered
by Ceres and proposed methods. Green and pink dots are the
estimated and groundtruth positions, respectively. The black
line shows the estimation error.

like map merging [27], path planning [28], [29], graph
sparsification [30]–[33], and active sensing [34].

Another essential aspect in VINS is ensuring its estimation
consistency1. First, from the system observability perspec-
tive, both filter-based [15], [16], [36], [37] and sliding-
window optimization-based VINS [1], [38] have been ob-
served to struggle with inconsistency issues arises from the
partially unobservable and nonlinear nature of VINS. Dis-
crepancies between sequential linearization points will cause
information to gain along unobservable directions mistakenly
and, in turn, significantly degrade the accuracy and reliability
of the estimator. Second, overconfident covariance estimation
underestimates the uncertainty associated with state esti-
mates and could lead to incorrect data association, flawed
decision-making, and potentially endangering the safety of
autonomous robotic applications (i.e., obstacle avoidance).
As such, it is crucial not just to guarantee a consistent
estimate but also to recover the corresponding covariance
that can properly describe the estimation error (see Fig. 1).

While computing covariance from filters, such as the
Extended Kalman Filter (EKF), is relatively straightforward,
the task becomes significantly more complex in optimization-
based methods, which solve a Nonlinear Least-Squares
(NLS) problem over a set of measurements iteratively.
Typically, inverting the information matrix is necessary to
recover the corresponding covariance, a process burdened
by cubic complexity. Even if full covariance is not needed,
accessing a subset of these variables in information form
still requires marginalizing most state variables, adding to the

1An estimator is consistent when its errors are zero-mean (unbiased)
and the covariance matrix is equal to that reported by the estimator (see
[35], Section 5.4).

complexity. Limited research initiatives aim to get covariance
in optimization-based VINS or SLAM scenarios. Thrun et
al. [39] suggest choosing a subblock of the information
matrix of the desired state variables (i.e., the Markov blanket)
and using its inverse (the conditional covariance) to ap-
proximate the actual covariance. The conditional covariance,
however, is an over-confident approximation of the marginal
covariance, can not consistently represent the true estimation
uncertainty and could hurt downstream applications. An
alternative method leverages a conservative approximation of
the covariance matrix [40], [41], risks missing some actual
information and decreasing constraints for ambiguous data
association. Kaess and Dellaert [25] proposed to recover the
exact covariance based on the incremental NLS solutions
(i.e., iSAM [42]). Their method, relying on the recursive
formula [43] utilized a dynamic programming algorithm
to compute the marginal covariance from the square root
information matrix [25]. SLAM++ further exploits the in-
cremental nature of the solver and incrementally updates
the marginal covariance as new measurements are integrated
efficiently. However, it does not account for changes in the
linearization points of the states [44], [45] . It is worth noting
that these methods are specifically designed for incremental
NLS solvers and cannot be directly applied to general
optimization-based VINS.

Moreover, none of the aforementioned work have con-
sidered estimation consistency and state marginalization in
covariance recovery. Our earlier work [1], [46] is, to the
best of our knowledge, the first comprehensive study of
VINS inconsistency within the context of a nonlinear fac-
tor graph. Using the First-estimates Jacobian (FEJ) design
method, which may appear counter-intuitive, we properly fix
certain state linearization points and significantly improve
performance. In this paper, we build upon this foundation
and introduce a novel, efficient, and consistent approach
for covariance recovery in optimization-based VINS. In
summary, our main contribution includes:

• We propose a novel, efficient, and consistent method
for covariance recovery in sliding-window optimization-
based VINS grounded on the FEJ method, demonstrat-
ing remarkable computational efficiency, around 4-10
times faster than existing methods.

• Based on the four most commonly used state-of-the-art
marginalization schemes and their different FEJ design
prerequisites, we ensure the consistency of both the state
estimate and the recovered covariance.

• We validate the proposed method via extensive numer-
ical studies, showing to achieve accurate covariance es-
timates and superior speed against existing approaches
across various scenarios.

II. FEJ-BASED OPTIMIZATION OF VINS

We formulate the NLS problem over the entire trajectory
until the current time tk. The system state consists of the
navigation states, x0:k, and 3D features, xf :

x0:k =
[
x⊤
0 . . . x⊤

k x⊤
f

]⊤
,xf =

[
Gf1

⊤ . . . Gf⊤g
]⊤

xk =
[
Ik
G q̄⊤ Gp⊤

Ik
Gv⊤

Ik
b⊤
g b⊤

a

]⊤
(1)

where I
Gq̄ is the unit quaternion2 that represents the rotation

I
GR from the global frame {G} to the IMU frame {I};
GpI and GvI are the IMU position and velocity in {G},
respectively; bg and ba are the gyroscope and accelerometer
biases; and the feature state xf comprises the global position
of g landmarks.

At timestep tk, the batch maximum a posteriori (MAP)
seeks to solve for the history of the state estimate x̂0:k by
minimizing the cost function include: 1) prior Cp0 2) IMU
motion constraints CI , and 3) camera measurements Cf :

C(x0:k) = Cp0
+

k−1∑
i=0

CIi +
∑

zi,j∈Z0:k

Cfij (2)

where the set Z0:k denotes all measurements (z) between
[t0, tk]. To solve, we perform the Gauss-Newton iterative
minimization. The second-order Taylor series of the l-th
iteration with linearization point x̂l

0:k is:

C(x̂l
0:k ⊞ δxl

0:k) ≃ C(x̂l
0:k) + bl⊤δxl

0:k +
1

2
δxl⊤

0:kA
lδxl

0:k

where bl and Al are the linearized gradient and Hessian. The
correction term and the updated state x̂l+1

0:k can be solved by:
Alδxl

0:k = −bl ⇒ x̂l+1
0:k = x̂l

0:k ⊞ δxl
0:k (3)

Given initial state x̂0, this iterative algorithm will compute
the global minimal estimates for the entire state x0:k with
all available measurements.

A. First-Estimates Jacobian (FEJ)
As robots explore the environment, solving the batch-

MAP problem, Eq. (2) with all measurements becomes
more computationally demanding with increasing state sizes.
State marginalization is thus needed to manage complexity.
However, this can introduce inconsistencies and lead to over-
confident estimations, hurting accuracy and consistency. The
FEJ technique was introduced to tackle this challenge [1],
[46]. It evaluates the Hessian using the first estimate x̂R(k)
instead of the current estimate x̂R(k

′) for all states xR

involved with the marginal:
C(x(k)) ≃ C(x̂R(k

′), x̂N (k′)) + b(x̂R(k), x̂N (k′))⊤δx(k′)

+
1

2
δx(k′)⊤A(x̂R(k), x̂N (k′))δx(k′) (4)

where xR denotes the remaining states that connected to
the marginal state, xN denotes the new state, and δx(k′) =
[δxR(k

′)⊤ δxN (k′)⊤]⊤. For example, as shown in Figure 3
(top), after we marginalize the robot state x0 and feature
f2, the remaining state x1, f1, x3, x4 and x5 connect to
the marginalized prior factor p1 require to be FEJ (bottom
left, shaded pink). For a thorough discussion on different
marginalization methods and the application of FEJ please
refer to our previous work [1], [46].

III. COVARIANCE RECOVERY

Recovering the estimated covariance while solving the
NLS [Eq. (2)] in real-time can be a computational bottleneck

2Throughout the paper, x̂ is used to denote the current best estimate
of a random variable x with δx = x ⊟ x̂ denotes the error state. For
the quaternion error state, we employ JPL multiplicative error [47] and use
δθ ∈ R3 defined by the error quaternion i.e., δq̄ = q̄⊗ ˆ̄q−1 ≃ [1

2
δθ⊤ 1]⊤.

The “⊞” and “⊟” operations map elements to and from a given manifold
and equate to simple “+” and “-” for vector variables [48].

camera

IMU

prior

FEJ-based

Marginalizer

Factors

Covariance Estimator

P̄
⊖

FEJ and no-FEJ nodes

Factors

FEJ factor

Cov. factor

Best factor

...

Update FEJ P̄
⊕

Update Full P̂

Optimization
Consistent Estimation

x̂Consistent mean

P̄
⊕

x ∼ N{x̂, P̂}

Downstream applizations

P̂P̄
⊕

P̂

Nodes

P̂Nodes

Marginalization

u

z

p0

P̄
⊖

Maintain

, FEJ and Cov. factors

Fig. 2: Diagram of FEJ-based VINS within nonlinear optimization with efficient and consistent covariance recovery.

due to the need to invert the information matrix A, such
that P = A−1. Naively performing matrix inversion will
be cubic complexity, O(n3), where n is the dimension of
states. In the following, we first explain the high-level idea
of how the FEJ design method can accelerate this process by
avoiding redundant computation in Section III-A. Next, we
present how to recover covariance using IMU and camera
factors in Section III-B. Section III-C explains in detail the
proposed fast covariance recovery algorithm in conjunction
with various marginalization methods.

A. FEJ-based Covariance Recovery

When solving the NLS problem with the FEJ method,
some measurement functions and their corresponding Hes-
sian matrices will be evaluated using fixed linearization
points (i.e., first-state estimates). More importantly, when a
measurement undergoes the FEJ process, even though the
state estimates may continuously change due to new mea-
surements or iterations, its first-estimate Jacobian and Hes-
sion information will remain permanently fixed. As shown in
Figrue 3 (bottom left), the FEJ factors (colored in pink) and
the corresponding covariances do not require re-evaluation.

Drawing from these insights, we first recover and maintain
a “FEJ” covariance P̄, use the FEJ measurements:

P̄⊕ = ∆P(P̄⊖, H̄, R̄) (5)

where P̄⊖ and P̄⊕ denote the previous and updated FEJ
covariance, ∆P(·) represents the update of FEJ covariance,

Algorithm 1 Efficient Covariance Recovery with FEJ
Build factor graph and perform optimization:

• Construct optimization problem using all measurements,
linearize using the FEJ or best state estimates, and solve for
the state mean estimates [Eq. (2), (3)].

State marginalization:
• Select states to be marginalized, set FEJ value for its

connected remaining state and perform marginalization.
Recover FEJ covariance:

• Given the previous FEJ covariance P̄⊖ and linearized factors
– IMU factor: propagate and augment [Eq. (8)].
– Camera factor: select ones connect to FEJ features

∗ KEEP FEJ feature: If is not in P̄⊖, initialize feature
[Eq. (11),(12),(13)]; otherwise, EKF update.

∗ Other FEJ feature: MSCKF update [Eq.(14)]
• Save and maintain the updated FEJ covariance, P̄⊕.

Recover full covariance:
• Given the updated FEJ covariance, P̄⊕, perform MSCKF

updates with the rest of camera factors to get P̂⊕ [Eq.(14)].

which is a function of the first estimate Jacobian, H̄, and
the measurement noise, R̄. We can then update the full
covariance using the FEJ covariance and the rest of non-
FEJ factors (i.e., best factors), its linearized Jacobian Ĥ and
corresponding noise matrix R̂ as:

P̂⊕ = ∆P(P̄⊕, Ĥ, R̂) (6)

where P̂⊖ and P̂⊕ are the full covariance before and after
the update, respectively.

B. Covariance Update Methods

We now explain how to derive ∆P(·) with IMU and cam-
era measurements. For simplicity, we do not distinguish FEJ
and best covariance/Jacobians in the following explanations,
as our methods are suitable for all.

1) IMU preintegration factor: Given the linearized IMU
preintegration measurement:

ũ ≃ −Φkx̃k + x̃k+1 +wk (7)

where wk ∼ N (0,Qk) denotes the propagated measurement
noise. The augmented covariance can be derived as:

P⊕ =

[
ΦkP

⊖Φ⊤
k +Qk ΦkP

⊖

P⊖Φ⊤
k P⊖

]
(8)

where P⊖ represent the covariance of xk.
Lemma 1: Given the same linearization point, the propa-

gated and augmented covariance matrix, Eq. (8), is equiva-
lent to inverting the information matrix.

Proof: See our tech report [49], Section 2.2.1.
2) Camera Measurement Factor: Given the robot states x,

their covariance P⊖, feature f , and its corresponding stacked
measurements, z, the linearized measurement equation is:

z̃ ≃ Hxx̃+Hf f̃ + n = H
[
x̃⊤ f̃⊤

]⊤
+ n (9)

If the feature is already in the covariance, we can use Eq. (9)
to perform an EKF covariance update:

P⊕ = P⊖ −P⊖H⊤ (
HP⊖H⊤ +R

)−1
HxP

⊖ (10)

where R is the measurement noise. If not, we can either a)
initialize the feature, or b) do an MSCKF update, eliminating
the need to maintain features and their state correlations to
reduce the dimension of the covariance matrix.

p1

x2 x6 x7

f3

u1 u2 u3 u4 u5 u6

z11

z21
z31

z23

z33 z43
z53 z63

z73

f1

x1 x3 x4
p1

x2 x5 x6 x7

f3

u1 u2 u3 u4 u5 u6

z11 z21

z31

z23

z33

z43 z53 z63
z73

f1

x3 x4

z71 z71
f1

x1

z71

x0 x1 x2 x3 x4 x5 x6 x7p0

f1 f2 f3

u0 u1 u2 u3 u4 u5 u6

z01
z11

z21

z31
z32 z42

z52 z23

z33
z43

z53 z63

z73
Marg. node

FEJ node

FEJ factor

Best factor

Best node

Cov. factor

Cov. node

x5

Fig. 3: Top: Example visual-inertial factor graph: Grey circles represent nodes (states) with edges (measurements) connecting
related states. fj is the jth feature, xi is robot state at ti. Bottom left: the resulting graph after marginalizing x0, f2, FEJ
node with fixed linearization points are shaded in pink, while pink edges denote those evaluated and linearized with FEJ.
Grey circles denote current state estimates (Best node), and black edges and measurements linearized with the current state
estimates (Best factor). For details on performing FEJ, refer to [1]. Bottom right: node and factors used to recover the FEJ
covariance. Blue are the extra “Cov.” factor and nodes used besides the FEJ (pink) ones.

a) Feature Initialization: We first perform Givens ro-
tations to Hf in Eq. (9) results in:[

z̃K1

z̃K2

]
=

[
Hx1

Hx2

]
x̃+

[
Hf1

0

]
f̃ +

[
nK1

nK2

]
(11)

The covariance is derived with the first sub-system, z̃K1:

P =

[
P⊖ Pxf

P⊤
xf Pff

]
=

[
P⊖ −P⊖H⊤

x1H
−⊤
f1

P⊤
xf Pff

]
(12)

where Pff = H−1
f1 (Hx1P

⊖H⊤
x1 + R1)H

−⊤
f1 . R1 is the

measurement noise corresponding to nK1. We then perform
the regular EKF update with the sub-system zK2 as:

P⊕ = P−PH⊤
x2

(
HPH⊤

x2 +R2

)−1
Hx2P (13)

where R2 is the measurement noise corresponding to nK2.
b) MSCKF Feature: One can remove the feature by

projecting the linearized measurement function, Eq. (9), onto
the left nullspace N of Hf :

N⊤z̃ ≃ N⊤Hxx̃+N⊤n ⇒ z̃′ = H′
xx̃+ n′ (14)

We can then directly perform EKF update:

P⊕ = P⊖ −P⊖H′
x
⊤
(
H′

xP
⊖H′

x
⊤
+R′

)−1

H′
xP

⊖ (15)

where R′ is the measurement noise corresponding to n′.
Lemma 2: Given the same linearized measurement equa-

tion, Eq. (9), the robot covariance will be the same if
performing the above two methods in Section III-B.2.a and
III-B.2.b.

Proof: See our tech report [49], Section 2.2.2.2.
Remark: While it is feasible to use the aforementioned

“MSCKF-like” method for incremental covariance update.
Naively recovering the covariance with every new measure-
ment by incremental method without recognizing the redun-
dant computation can still introduce significant overhead, as
the EKF update complexity is O(mn2), where m is the
dimension of measurements. Thanks to the FEJ method that
fixes certain state linearization points, we can accelerate the

covariance recovery process and eliminate the need to re-
evaluate all the measurements redundantly.

C. Algorithm
Fig. 2 and Algorithm 1 summarize our proposed co-

variance recovery method. To properly implement FEJ, we
fix the linearization point of states when they are about
to be connected to the marginalized prior factor. When
marginalizing certain robot states (i.e., the oldest/N-oldest)
out of the sliding window, the four most commonly used
methods are: 1) KEEP, marginalize the IMU, keep features;
2) DROP, drop factors between the feature and the to-be-
marginalize IMU, keep the feature; 3) MARG, marginalize
both IMU and its connected features; 4) CKLAM, duplicate
and marginalize specific features and IMU. For a compre-
hensive understanding of FEJ implementation with these
methods, refer to our earlier works [1], [46].

The optimal approach involves first recovering the FEJ
covariance by leveraging fully FEJ’ed factors (all the states
used to evaluate the factor’s Jacobian are FEJ’ed). However,
this introduces specific challenges and may even be unfea-
sible in certain scenarios. For example, shown in Fig. 3
(bottom left), using the fully FEJ’ed factors z01, z11, z31
to initialize feature f1 into covariance can be problematic
due to the insufficient constraints like low parallax. Another
example is when marginalize feature, f2, z32, z42 and z52
are used to create prior connect to x3, x4 and x5, which is
not invertible, preventing us from obtaining the covariance.

Interestingly, our previous work found that applying FEJ
to the IMU factors minimally affects estimation performance
(see Table III in [1]). Thus, we select to use the IMU factor
to update the FEJ covariance when it is initially added to
the optimization problem. As depicted in Fig. 3 (bottom
right), the blue IMU nodes and factors are “extra” just for
recovering FEJ covariance. Notably, we still rigorously apply
FEJ in optimization.

We also take particular care when integrating the camera
factors. First, we can pinpoint the FEJ’ed features and
their connected factors through marginalization. Different
scenarios exist for FEJ features:

• KEEP FEJ feature: If a feature is FEJ’ed with the
KEEP method (see Fig. 1(a) in [1]). We will initialize it,
[See Section III-B.2.a] if it is not in the FEJ covariance;
otherwise, an EKF update is performed to update the
FEJ covariance;

• Other FEJ features: For all other FEJ features, we
perform an MSCKF FEJ covariance update, Eq.(14).

It is worth noting that a minor discrepancy may arise
between the linearization points used in the optimization and
during feature covariance initialization. When initializing the
feature, we employ all its linked factors to mitigate risks
like low parallax, even if not all factors are fully FEJ’ed.
For example, in Fig. 3 (bottom right), both pink (FEJ) and
blue (extra) factors help to initialize f1. This discrepancy has
limited impact as it only happens at initialization, and the
covariance will be updated when the feature is reobserved.
Furthermore, the KEEP-FEJ feature is the only one that
requires initialization into the FEJ covariance because it can
be reobserved and updated with new measurements. We will
update and maintain the FEJ covariance when new IMU or
FEJ camera factors are available.

We then use all the remaining no-FEJ camera factors to
perform MSCKF updates and recover the full covariance, P̂,
of the whole sliding window.

IV. NUMERICAL STUDY

In line with our previous study [1], we simulate the
realistic indoor dataset to test the proposed algorithm. We
leverage the OpenVINS simulator [50], CPI preintegration
[51] with the Ceres Solver [52] (see [49] for more detail
about simulation parameters). In the following section, CK-
LAM shifts 2 robot states, others marginalize 1 each time.

A. Time Evaluation
We first investigate the computational cost, comparing the

proposed covariance recovery method to the Ceres Solver.
Ceres solver recovers covariance either using dense SVD or
sparse QR decomposition of the information matrix followed
by a back substitution, we focus on the sparse QR approach
due to the impractical slowness of dense SVD. Shown in
Fig. 6, we compared different covariance recovery algorithms
(line colors), considering variances in sliding window sizes
(x-axis) and the number of features incorporated into the
optimization (line styles). “ceres” use Ceres to recover the
latest IMU pose (6DoF). “ceres full” uses Ceres for full

Fig. 4: IMU x position and roll angle errors (pink) with ±3σ
bounds (dashed black) across 20 Monte Carlo runs (KEEP).

TABLE I: Average ATE and NEES (20 runs)

Marg. method ATE
(deg/m)

NEES-ceres
(ori/pos)

NEES-proposed
(ori/pos)

KEEP 0.328 / 0.116 2.860 / 2.839 2.533 / 2.413
MARG 0.646 / 0.183 3.171 / 2.460 2.920 / 2.158
DROP 0.739 / 0.233 2.731 / 2.726 3.150 / 2.663

CKLAM 0.680 / 0.237 2.613 / 2.901 2.987 / 2.821

Fig. 5: The size of states (left) and factors (right). “total”
represents the total size, “fej” is the number of FEJ nodes,
and “cov” denotes the number of the states and factors we
used to recover the covariance.

IMU states in the sliding window, while “proposed” is our
proposed FEJ-based method. Given space constraints, we
show the runtime for each algorithm only with a feature
size of 100. For detailed results, refer to our technical
report [49]3.

Generally, an increase in state or measurement size cor-
responds to a longer time. Recovering the full IMU states
within the sliding window is more time-consuming than re-
covering the latest IMU pose via Ceres. Throughout our tests,
our proposed method is the most efficient—evidenced by the
green lines anchoring the bottom in all figures. Impressively,
we outperform “ceres”, despite recovering covariance for the
full sliding-window states, whereas “ceres” is limited to the
latest 6DoF pose, highlighting our approach’s practical ad-
vantages. Among the marginalization techniques, the KEEP
method is the slowest for “ceres” due to the denser prior
factor. Interestingly, looking into the proposed method, it
has the most significant efficient gain in the KEEP method
because a substantial number of features are FEJ’ed during
the marginalization.

Fig. 5 (left) shows total, FEJ state sizes, and states for
covariance recovery (pink and blue nodes in Fig. 3) for
KEEP method when the number of features is 100. As
discussed in Section III-C, there is a small difference in
the number of FEJ and Cov nodes. The right figure shows
the total number of factors in the optimization problem and
the factors used to update covariance at every timestep. It
is clear to see that every time we only use a subset of
total factors to update covariance, this is because FEJ’ed
factors have been absorbed into FEJ covariance, which does
not require re-evaluation. This shows the proposed method
avoids redundant computation.

B. Consistency Evaluation
We then look into the consistency of the system and the

recovered covariance. In this section, we present simulation

3All computational results were performed in a single thread on an 12th
Gen Intel(R) Core(TM) i7-12800HX.

Fig. 6: Timing comparison in covariance recovery across algorithms with varied marginalization methods. Line colors denote
the different algorithms. “Ceres (blue)”: utilizes Ceres to recover covariance of the most recent IMU pose (6 DoF), “Ceres
full (orange)”: use Ceres to recover all IMU states within the sliding window, “Proposed (green)” proposed FEJ-based
covariance recovery method. Different line style denotes the different number of feature in the optimization problem (25,
50, and 100 features). x-axis is the clone (sliding window) size, while y-axis is the computional time (ms).

Fig. 7: NEES for IMU orientation & position over 20 runs: Ceres vs. proposed

results incorporating 35 features within the sliding window.
The metrics used are Absolute Trajectory Error (ATE) and
Normalized Estimation Error Squared (NEES), which should
match the 3 DoF state size for both orientation and position
if the estimator is consistent. Table I reports the ATE and
NEES calculated from covariance recovered by ceres and
the proposed method over 20 Monte Carlo runs.

All marginalization techniques exhibit consistency, with
NEES values close to 3. The discrepancies between Ceres
and our proposed method arise from the slightly varied
linearization points used in each, as detailed in Section III-
C. The KEEP method, due to its longer feature tracking,
unsurprisingly achieves the most accurate performance with
the smallest ATE. Fig. 7 presents the average NEES of the
IMU pose across 20 Monte Carlo simulations. The results
show that the FEJ-based VINS maintains consistency over
time with NEES values near 3. Furthermore, the similarity
in NEES values over time when comparing the proposed
covariance estimator to the ceres method indicates that the
covariance matrix computed using our algorithm is in close
alignment with those produced by Ceres. Fig. 4 confirms that

the estimation error remains within the bounds of ±3σ.

V. CONCLUSION AND FUTURE WORK

In this paper, we have addressed one of the key challenges
in optimization-based VINS: achieving efficient and consis-
tent covariance recovery. Leveraging the FEJ methodology
which fixes certain state linearization points when evaluating
the Jacobian to improve the estimation performance, we
have significantly accelerated the covariance estimation by
avoiding redundant computation. The proposed approach
not only ensures consistent state and covariance estimations
but also achieves a speed that is 4-10 times faster than
existing methods. We have rigorously designed our approach
using the four predominant state-of-the-art marginalization
methods, each with its unique FEJ prerequisites. Through
comprehensive numerical studies, we have validated the
consistency and efficiency of the proposed method, empha-
sizing the significant impact of the FEJ methodology in
the evolution of VINS technology. In the future, we are
interested in taking the benefits of FEJ to further accelerate
the optimization process and downstream applications.

REFERENCES

[1] C. Chen, P. Geneva, Y. Peng, W. Lee, and G. Huang, “Optimization-
based vins: Consistency, marginalization, and fej,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2023.

[2] G. Huang, “Visual-inertial navigation: A concise review,” in Proc.
International Conference on Robotics and Automation, Montreal,
Canada, May 2019.

[3] T. Özaslan, G. Loianno, J. Keller, C. J. Taylor, V. Kumar, J. M.
Wozencraft, and T. Hood, “Autonomous navigation and mapping for
inspection of penstocks and tunnels with mavs,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1740–1747, 2017.

[4] S. Shen, N. Michael, and V. Kumar, “Tightly-coupled monocular
visual-inertial fusion for autonomous flight of rotorcraft mavs,” in
Proc. of the IEEE International Conference on Robotics and Automa-
tion, Seattle, USA, 2015.

[5] C. Chen, Y. Yang, P. Geneva, W. Lee, and G. Huang, “Visual-inertial-
aided online mav system identification,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, Kyoto,
Japan., 2022.

[6] J. Eisele, Z. Song, K. Nelson, and K. Mohseni, “Visual-inertial guid-
ance with a plenoptic camera for autonomous underwater vehicles,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2777–2784,
2019.

[7] P. Geneva, N. Merrill, Y. Yang, C. Chen, W. Lee, and G. Huang,
“Versatile 3d multi-sensor fusion for lightweight 2d localization,” in
Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Las Vegas, NV, 2020.

[8] C. Chen, P. Geneva, Y. Peng, W. Lee, and G. Huang, “Monocular
visual-inertial odometry with planar regularities,” in Proc. of the IEEE
International Conference on Robotics and Automation, London, UK.,
2023.

[9] D. S. Bayard, D. T. Conway, R. Brockers, J. H. Delaune, L. H.
Matthies, H. F. Grip, G. B. Merewether, T. L. Brown, and A. M.
San Martin, “Vision-based navigation for the nasa mars helicopter,” in
AIAA Scitech 2019 Forum, 2019, p. 1411.

[10] K. Wu, A. M. Ahmed, G. A. Georgiou, and S. I. Roumeliotis, “A
square root inverse filter for efficient vision-aided inertial navigation
on mobile devices.” in Robotics: Science and Systems, vol. 2. Rome,
Italy, 2015.

[11] D. G. Kottas and S. I. Roumeliotis, “An iterative kalman smoother
for robust 3d localization on mobile and wearable devices,” in 2015
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2015, pp. 6336–6343.

[12] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-
inertial odometry,” The International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, 2013.

[13] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis,
“Camera-imu-based localization: Observability analysis and consis-
tency improvement,” The International Journal of Robotics Research,
vol. 33, no. 1, pp. 182–201, 2014.

[14] M. Bloesch, M. Burri, S. Omari, M. Hutter, and R. Siegwart, “Iterated
extended kalman filter based visual-inertial odometry using direct pho-
tometric feedback,” The International Journal of Robotics Research,
vol. 36, no. 10, pp. 1053–1072, 2017.

[15] C. Chen, Y. Yang, P. Geneva, and G. Huang, “FEJ2: A consistent
visual-inertial state estimator design,” in International Conference on
Robotics and Automation (ICRA), Philadelphia, USA, 2022.

[16] G. Huang, A. I. Mourikis, and S. I. Roumeliotis, “Observability-based
rules for designing consistent EKF SLAM estimators,” International
Journal of Robotics Research, vol. 29, no. 5, pp. 502–528, Apr. 2010.

[17] T. Ke, K. J. Wu, and S. I. Roumeliotis, “Rise-slam: A resource-aware
inverse schmidt estimator for slam,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019,
pp. 354–361.

[18] Y. Peng, C. Chen, and G. Huang, “Ultrafast square-root filter-based
VINS,” in Proc. International Conference on Robotics and Automa-
tion, Yokohama, Japan, May 2024.

[19] ——, “Quantized visual-inertial odometry,” in Proc. International
Conference on Robotics and Automation, Yokohama, Japan, May
2024.

[20] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[21] S. Leutenegger, “Okvis2: Realtime scalable visual-inertial slam with
loop closure,” arXiv preprint arXiv:2202.09199, 2022.

[22] T. Qin, P. Li, and S. Shen, “VINS-Mono: A robust and versa-
tile monocular visual-inertial state estimator,” IEEE Transactions on
Robotics, vol. 34, no. 4, pp. 1004–1020, 2018.

[23] V. Usenko, N. Demmel, D. Schubert, J. Stückler, and D. Cre-
mers, “Visual-inertial mapping with non-linear factor recovery,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 422–429, 2019.

[24] C. Campos, R. Elvira, J. J. G. Rodrı́guez, J. M. Montiel, and J. D.
Tardós, “ORB-SLAM3: An accurate open-source library for visual,
visual–inertial, and multimap slam,” IEEE Transactions on Robotics,
vol. 37, no. 6, pp. 1874–1890, 2021.

[25] M. Kaess and F. Dellaert, “Covariance recovery from a square root
information matrix for data association,” Robotics and autonomous
systems, vol. 57, no. 12, pp. 1198–1210, 2009.

[26] J. Neira and J. D. Tardós, “Data association in stochastic mapping
using the joint compatibility test,” IEEE Transactions on robotics and
automation, vol. 17, no. 6, pp. 890–897, 2001.

[27] J. G. Mangelson, D. Dominic, R. M. Eustice, and R. Vasudevan, “Pair-
wise consistent measurement set maximization for robust multi-robot
map merging,” in 2018 IEEE international conference on robotics and
automation (ICRA). IEEE, 2018, pp. 2916–2923.

[28] R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, “Planning
reliable paths with pose slam,” IEEE Transactions on Robotics, vol. 29,
no. 4, pp. 1050–1059, 2013.

[29] P. Whaite and F. P. Ferrie, “Autonomous exploration: Driven by
uncertainty,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 19, no. 3, pp. 193–205, 1997.

[30] G. Huang, M. Kaess, and J. Leonard, “Consistent sparsification for
graph optimization,” in Proc. of the European Conference on Mobile
Robots, Barcelona, Spain, Sept. 2013, pp. 150–157.

[31] N. Carlevaris-Bianco and R. M. Eustice, “Generic factor-based node
marginalization and edge sparsification for pose-graph slam,” in 2013
IEEE International Conference on Robotics and Automation, 2013,
pp. 5748–5755.

[32] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally
scalable visual slam using a reduced pose graph,” in 2013 IEEE
International Conference on Robotics and Automation, 2013, pp. 54–
61.

[33] K. Eckenhoff, L. Paull, and G. Huang, “Decoupled, consistent node
removal and edge sparsification for graph-based SLAM,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Daejeon, Korea, Oct. 2016, pp. 3275–3282.

[34] A. Davison and D. Murray, “Simultaneous localization and map-
building using active vision,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 24, no. 7, pp. 865–880, 2002.

[35] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with appli-
cations to tracking and navigation: theory algorithms and software.
John Wiley & Sons, 2001.

[36] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis, “Con-
sistency analysis and improvement of vision-aided inertial navigation,”
IEEE Transactions on Robotics, vol. 30, no. 1, pp. 158–176, 2013.

[37] M. Li and A. I. Mourikis, “High-precision, consistent ekf-based visual-
inertial odometry,” The International Journal of Robotics Research,
vol. 32, no. 6, pp. 690–711, 2013.

[38] T.-C. Dong-Si and A. I. Mourikis, “Motion tracking with fixed-
lag smoothing: Algorithm and consistency analysis,” in 2011 IEEE
International Conference on Robotics and Automation. IEEE, 2011,
pp. 5655–5662.

[39] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” The International Journal of Robotics Research,
vol. 23, no. 7-8, pp. 693–716, 2004.

[40] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter, “Visually
mapping the rms titanic: Conservative covariance estimates for slam
information filters,” The international journal of robotics research,
vol. 25, no. 12, pp. 1223–1242, 2006.

[41] R. Eustice, H. Singh, J. J. Leonard, M. R. Walter, and R. Ballard,
“Visually navigating the rms titanic with slam information filters.” in
Robotics: Science and Systems, vol. 2005, 2005, pp. 57–64.

[42] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–1378, 2008.

[43] G. H. Golub and R. J. Plemmons, “Large-scale geodetic least-squares
adjustment by dissection and orthogonal decomposition,” Linear Al-
gebra and Its Applications, vol. 34, pp. 3–28, 1980.

[44] V. Ila, L. Polok, M. Solony, P. Smrz, and P. Zemcik, “Fast covariance
recovery in incremental nonlinear least square solvers,” in 2015 IEEE

International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 4636–4643.

[45] V. Ila, L. Polok, M. Solony, and P. Svoboda, “Slam++-a highly
efficient and temporally scalable incremental slam framework,” The
International Journal of Robotics Research, vol. 36, no. 2, pp. 210–
230, 2017.

[46] C. Chen, P. Geneva, Y. Peng, W. Lee, and G. Huang, “Technical
report: Optimization-based VINS: Consistency, marginalization, and
fej,” University of Delaware, Tech. Rep. RPNG-2023-GRAPH, 2023.
[Online]. Available: https://udel.edu/∼ghuang/papers/tr graph.pdf

[47] N. Trawny and S. I. Roumeliotis, “Indirect Kalman filter for 3D
attitude estimation,” University of Minnesota, Dept. of Comp. Sci.
& Eng., Tech. Rep., Mar. 2005.

[48] C. Hertzberg, R. Wagner, U. Frese, and L. SchröDer, “Integrating
generic sensor fusion algorithms with sound state representations
through encapsulation of manifolds,” Information Fusion, vol. 14,
no. 1, pp. 57–77, Jan. 2013.

[49] C. Chen, Y. Peng, and G. Huang, “Technical report: Fast and
consistent covariance recovery for sliding-window optimization-based
vins,” University of Delaware, Tech. Rep. RPNG-2024-COV, 2024.
[Online]. Available: https://udel.edu/∼ghuang/papers/tr cov.pdf

[50] P. Geneva, K. Eckenhoff, and G. Huang, “A linear-complexity EKF for
visual-inertial navigation with loop closures,” in Proc. International
Conference on Robotics and Automation, Montreal, Canada, May
2019.

[51] K. Eckenhoff, P. Geneva, and G. Huang, “Closed-form preintegration
methods for graph-based visual-inertial navigation,” International
Journal of Robotics Research, vol. 38, no. 5, pp. 563–586, 2019.
[Online]. Available: https://github.com/rpng/cpi

[52] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” https:
//github.com/ceres-solver/ceres-solver, 2022.

https://udel.edu/~ghuang/papers/tr_graph.pdf
https://udel.edu/~ghuang/papers/tr_cov.pdf
https://github.com/rpng/cpi
https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver

	Introduction and Related Work
	FEJ-based Optimization of VINS
	First-Estimates Jacobian (FEJ)

	Covariance Recovery
	FEJ-based Covariance Recovery
	Covariance Update Methods
	IMU preintegration factor
	Camera Measurement Factor

	Algorithm

	Numerical Study
	Time Evaluation
	Consistency Evaluation

	Conclusion and Future Work
	References

